TPTP Problem File: SYO882^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO882^1 : TPTP v9.0.0. Released v7.5.0.
% Domain : Syntactic
% Problem : Synthesize a simple lambda-expression containing an equality
% Version : Biased.
% English :
% Refs : [Ben21] Bentkamp (2021) Email to Geoff Sutcliffe
% Source : [Ben21]
% Names : fluidbool.p [Ben21]
% Status : Unsatisfiable
% Rating : 0.67 v9.0.0, 0.85 v8.1.0, 0.91 v7.5.0
% Syntax : Number of formulae : 6 ( 1 unt; 4 typ; 0 def)
% Number of atoms : 5 ( 3 equ; 0 cnn)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 12 ( 3 ~; 1 |; 0 &; 8 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 4 usr; 4 con; 0-2 aty)
% Number of variables : 1 ( 0 ^; 1 !; 0 ?; 1 :)
% SPC : TH0_UNS_EQU_NAR
% Comments : The substitution Y -> ^[X : $i]: g (X = a) solves the problem.
% : Biased because it was desiged for testing features in
% Zipperposition.
%------------------------------------------------------------------------------
thf(h,type,
h: $i > $i ).
thf(g,type,
g: $o > $i ).
thf(a,type,
a: $i ).
thf(b,type,
b: $i ).
thf(a1,axiom,
! [Y: $i > $i] :
( ( ( h @ ( Y @ b ) )
!= ( h @ ( g @ $false ) ) )
| ( ( h @ ( Y @ a ) )
!= ( h @ ( g @ $true ) ) ) ) ).
thf(a2,axiom,
a != b ).
%------------------------------------------------------------------------------