TPTP Problem File: SYO549^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO549^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Syntactic
% Problem : The eta double negation problem
% Version : Especial.
% English :
% Refs : [Bro11] Brown E. (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : ETADN [Bro11]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.17 v8.2.0, 0.18 v8.1.0, 0.08 v7.4.0, 0.11 v7.3.0, 0.10 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.12 v6.4.0, 0.14 v6.3.0, 0.17 v6.2.0, 0.33 v6.1.0, 0.17 v6.0.0, 0.00 v5.3.0, 0.25 v5.2.0
% Syntax : Number of formulae : 5 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 6 ( 0 equ; 0 cnn)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 10 ( 4 ~; 0 |; 0 &; 6 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 7 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 3 usr; 0 con; 1-2 aty)
% Number of variables : 2 ( 2 ^; 0 !; 0 ?; 2 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This higher-order problem is immediately solved if one removes
% double negations embedded inside terms and eta-normalizes.
% Otherwise, search may be required.
%------------------------------------------------------------------------------
thf(p,type,
p: ( $o > $o ) > ( $o > $o ) > $o ).
thf(f,type,
f: $o > $o ).
thf(g,type,
g: $o > $o ).
thf(pfg,axiom,
( p
@ ^ [X: $o] :
( f
@ ~ ~ X )
@ g ) ).
thf(pfgc,conjecture,
( p @ f
@ ^ [X: $o] :
( g
@ ~ ~ X ) ) ).
%------------------------------------------------------------------------------