TPTP Problem File: SYO535^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO535^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Syntactic
% Problem : Choice on relations between individuals and functions
% Version : Especial.
% English :
% Refs : [Bro11] Brown E. (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE12 [Bro11]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.00 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.43 v6.1.0, 0.29 v5.5.0, 0.50 v5.4.0, 0.60 v5.2.0
% Syntax : Number of formulae : 9 ( 2 unt; 4 typ; 2 def)
% Number of atoms : 2 ( 2 equ; 0 cnn)
% Maximal formula atoms : 1 ( 0 avg)
% Number of connectives : 22 ( 0 ~; 0 |; 0 &; 19 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 31 ( 31 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 12 ( 4 ^; 3 !; 5 ?; 12 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Choice operators on i and ii are used to define a choice operator
% on i*ii (Curried).
%------------------------------------------------------------------------------
thf(eps,type,
eps: ( $i > $o ) > $i ).
thf(choiceax,axiom,
! [P: $i > $o] :
( ? [X: $i] : ( P @ X )
=> ( P @ ( eps @ P ) ) ) ).
thf(epsii,type,
epsii: ( ( $i > $i ) > $o ) > $i > $i ).
thf(choiceaxii,axiom,
! [P: ( $i > $i ) > $o] :
( ? [X: $i > $i] : ( P @ X )
=> ( P @ ( epsii @ P ) ) ) ).
thf(epsa,type,
epsa: ( $i > ( $i > $i ) > $o ) > $i ).
thf(epsad,definition,
( epsa
= ( ^ [R: $i > ( $i > $i ) > $o] :
( eps
@ ^ [X: $i] :
? [Y: $i > $i] : ( R @ X @ Y ) ) ) ) ).
thf(epsb,type,
epsb: ( $i > ( $i > $i ) > $o ) > $i > $i ).
thf(epsbd,definition,
( epsb
= ( ^ [R: $i > ( $i > $i ) > $o] :
( epsii
@ ^ [Y: $i > $i] : ( R @ ( epsa @ R ) @ Y ) ) ) ) ).
thf(conj,conjecture,
! [R: $i > ( $i > $i ) > $o] :
( ? [X: $i,Y: $i > $i] : ( R @ X @ Y )
=> ( R @ ( epsa @ R ) @ ( epsb @ R ) ) ) ).
%------------------------------------------------------------------------------