TPTP Problem File: SYO530^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO530^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Syntactic
% Problem : Binary choice on individuals
% Version : Especial.
% English : epsa and epsb work together to give an a and b such that R a b
% holds, if such an a and b exist for a binary relation R on $i.
% A choice operator on i can be used to define a choice operator on
% i*i (Curried). In this version, the solution is given and the
% goal is to check that it works.
% Refs : [Bac10] Backes (2010), Tableaux for Higher-Order Logic with If
% : [Bro11] Brown E. (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE7 [Bro11]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.09 v7.5.0, 0.00 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.43 v6.1.0, 0.29 v5.5.0, 0.50 v5.4.0, 0.60 v5.2.0
% Syntax : Number of formulae : 7 ( 2 unt; 3 typ; 2 def)
% Number of atoms : 2 ( 2 equ; 0 cnn)
% Maximal formula atoms : 1 ( 0 avg)
% Number of connectives : 18 ( 0 ~; 0 |; 0 &; 16 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 15 ( 15 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 0 con; 1-2 aty)
% Number of variables : 10 ( 4 ^; 2 !; 4 ?; 10 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(eps,type,
eps: ( $i > $o ) > $i ).
thf(choiceax,axiom,
! [P: $i > $o] :
( ? [X: $i] : ( P @ X )
=> ( P @ ( eps @ P ) ) ) ).
thf(epsa,type,
epsa: ( $i > $i > $o ) > $i ).
thf(epsad,definition,
( epsa
= ( ^ [R: $i > $i > $o] :
( eps
@ ^ [X: $i] :
? [Y: $i] : ( R @ X @ Y ) ) ) ) ).
thf(epsb,type,
epsb: ( $i > $i > $o ) > $i ).
thf(epsbd,definition,
( epsb
= ( ^ [R: $i > $i > $o] :
( eps
@ ^ [Y: $i] : ( R @ ( epsa @ R ) @ Y ) ) ) ) ).
thf(conj,conjecture,
! [R: $i > $i > $o] :
( ? [X: $i,Y: $i] : ( R @ X @ Y )
=> ( R @ ( epsa @ R ) @ ( epsb @ R ) ) ) ).
%------------------------------------------------------------------------------