TPTP Problem File: SYO524_1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYO524_1 : TPTP v9.0.0. Released v5.0.0.
% Domain : Arithmetic
% Problem : Monotone function
% Version : Especial.
% English :
% Refs : [PW06] Prevosto & Waldmann (2006), SPASS+T
% : [Wal10] Waldmann (2010), Email to Geoff Sutcliffe
% Source : [Wal10]
% Names : monotone_function [Wal10]
% Status : Theorem
% Rating : 0.00 v6.2.0, 0.20 v6.1.0, 0.44 v6.0.0, 0.50 v5.5.0, 0.38 v5.4.0, 0.62 v5.3.0, 0.57 v5.2.0, 0.80 v5.1.0, 0.75 v5.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 3 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 2 ( 0 ~; 0 |; 1 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Maximal term depth : 3 ( 2 avg)
% Number arithmetic : 12 ( 3 atm; 2 fun; 6 num; 1 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 1 usr; 5 con; 0-2 aty)
% Number of variables : 1 ( 1 !; 0 ?; 1 :)
% SPC : TF0_THM_NEQ_ARI
% Comments :
%--------------------------------------------------------------------------
tff(f_type,type,
f: $int > $int ).
tff(co1,conjecture,
( ( ! [U: $int] : $lesseq(f($sum(U,1)),f($sum(U,2)))
& $lesseq(f(7),3) )
=> $lesseq(f(4),3) ) ).
%--------------------------------------------------------------------------