TPTP Problem File: SYO520^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO520^1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Syntactic
% Problem : A simple problem with a choice operator
% Version : Especial.
% English :
% Refs : [Bro10] Brown E. (2010), Email to Geoff Sutcliffe
% Source : [Bro10]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v4.1.0
% Syntax : Number of formulae : 5 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 4 ( 0 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 11 ( 2 ~; 0 |; 0 &; 8 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 2 usr; 0 con; 1-1 aty)
% Number of variables : 3 ( 1 ^; 1 !; 1 ?; 3 :)
% SPC : TH0_UNS_NEQ_NAR
% Comments : The operator eps for type i is given, and assumed to be a choice
% operator. This is to get around using the choice operator @+ in
% TH0 syntax (since it is not ). eps maybe semantically
% different from the choice operator @+ but a theorem prover may
% recognize eps is a choice operator and treat it accordingly.
%------------------------------------------------------------------------------
thf(eps,type,
eps: ( $i > $o ) > $i ).
thf(epschoice,axiom,
! [P: $i > $o] :
( ? [X: $i] : ( P @ X )
=> ( P @ ( eps @ P ) ) ) ).
thf(p,type,
p: $i > $o ).
thf(ax1,axiom,
( p
@ ( eps
@ ^ [X: $i] :
~ ( p @ X ) ) ) ).
thf(ax2,axiom,
~ ( p @ ( eps @ p ) ) ).
%------------------------------------------------------------------------------