TPTP Problem File: SYO504^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO504^1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Syntactic
% Problem : Hoeschele p.21
% Version : Especial.
% English :
% Refs : [Bro09] Brown E. (2009), Email to Geoff Sutcliffe
% : [Hoe09] Hoeschele (2009), Towards a Semi-Automatic Higher-Orde
% Source : [Bro09]
% Names : basic17 [Bro09]
% Status : Theorem
% Rating : 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v4.1.0
% Syntax : Number of formulae : 7 ( 0 unt; 6 typ; 0 def)
% Number of atoms : 23 ( 3 equ; 0 cnn)
% Maximal formula atoms : 8 ( 23 avg)
% Number of connectives : 16 ( 0 ~; 1 |; 4 &; 10 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 7 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 0 ( 0 ^; 0 !; 0 ?; 0 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(a,type,
a: $o ).
thf(b,type,
b: $o ).
thf(h,type,
h: $o > $o > $o ).
thf(i,type,
i: $o > $o > $o ).
thf(g,type,
g: ( $o > $o > $o ) > $o ).
thf(f,type,
f: ( ( $o > $o > $o ) > $o ) > $o ).
thf(claim,conjecture,
( ( ( ( h @ a @ b )
= ( a
& b ) )
& ( ( i @ a @ b )
= ( a
| b ) )
& ( ( f @ g )
= ( i @ a @ b ) )
& ( h @ a @ b ) )
=> ( f @ g ) ) ).
%------------------------------------------------------------------------------