TPTP Problem File: SYO502^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO502^1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Syntactic
% Problem : Rules sym and con handle positive equations at i
% Version : Especial.
% English :
% Refs : [BS09a] Brown & Smolka (2009), Terminating Tableaux for the Ba
% : [BS09b] Brown E. & Smolka (2009), Extended First-Order Logic
% : [Bro09] Brown E. (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : Example 3.2 [BS09a]
% : basic7 [Bro09]
% Status : Theorem
% Rating : 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0
% Syntax : Number of formulae : 5 ( 0 unt; 4 typ; 0 def)
% Number of atoms : 3 ( 3 equ; 0 cnn)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 8 ( 2 ~; 2 |; 0 &; 4 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 0 ( 0 ^; 0 !; 0 ?; 0 :)
% SPC : TH0_THM_EQU_NAR
% Comments : The fragment of simple type theory that restricts equations to
% base types and disallows lambda abstraction and quantification is
% decidable. This is an example.
%------------------------------------------------------------------------------
thf(a,type,
a: $i ).
thf(b,type,
b: $i ).
thf(f,type,
f: $i > $i ).
thf(g,type,
g: $i > $i ).
thf(claim,conjecture,
( ( a != b )
| ( ( f @ a )
!= ( g @ b ) )
| ( ( f @ b )
= ( g @ a ) ) ) ).
%------------------------------------------------------------------------------