TPTP Problem File: SYO500^1.003.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO500^1.003 : TPTP v9.0.0. Released v4.1.0.
% Domain : Syntactic
% Problem : Three function variant of the Kaminski equation
% Version : Especial.
% English :
% Refs : [Bro09] Brown E. (2009), Email to Geoff Sutcliffe
% : [Hoe09] Hoeschele (2009), Towards a Semi-Automatic Higher-Orde
% Source : [Bro09]
% Names : basic11 [Bro09]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.23 v8.1.0, 0.27 v7.5.0, 0.43 v7.4.0, 0.44 v7.2.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.43 v6.1.0, 0.57 v5.5.0, 0.50 v5.4.0, 0.80 v4.1.0
% Syntax : Number of formulae : 5 ( 1 unt; 4 typ; 0 def)
% Number of atoms : 15 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 15 avg)
% Number of connectives : 12 ( 0 ~; 0 |; 0 &; 12 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 0 ( 0 ^; 0 !; 0 ?; 0 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(x,type,
x: $o ).
thf(f0,type,
f0: $o > $o ).
thf(f1,type,
f1: $o > $o ).
thf(f2,type,
f2: $o > $o ).
thf(kaminski3,conjecture,
( ( f0 @ ( f1 @ ( f1 @ ( f1 @ ( f2 @ x ) ) ) ) )
= ( f0 @ ( f0 @ ( f0 @ ( f1 @ ( f2 @ ( f2 @ ( f2 @ x ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------