TPTP Problem File: SYO499^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO499^1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : Explosive confrontation
% Version : Especial.
% English : The Mensa Example: There are not 3 distinct values of type $o.
% Refs : [BS09a] Brown & Smolka (2009), Terminating Tableaux for the Ba
% : [BS09b] Brown E. & Smolka (2009), Extended First-Order Logic
% : [Smo09] Smolka (2009), Email to Chris Benzmueller
% : [Bro09] Brown E. (2009), Email to Geoff Sutcliffe
% Source : [Smo09]
% Names : Example 3.3 [BS09a]
% : basic8 [Bro09]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.08 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v6.0.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.40 v5.3.0, 0.60 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 10 ( 0 unt; 9 typ; 0 def)
% Number of atoms : 18 ( 6 equ; 0 cnn)
% Maximal formula atoms : 6 ( 18 avg)
% Number of connectives : 20 ( 3 ~; 5 |; 0 &; 12 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 7 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 10 ( 9 usr; 3 con; 0-2 aty)
% Number of variables : 0 ( 0 ^; 0 !; 0 ?; 0 :)
% SPC : TH0_THM_EQU_NAR
% Comments : The fragment of simple type theory that restricts equations to
% base types and disallows lambda abstraction and quantification is
% decidable. This is an example.
%------------------------------------------------------------------------------
thf(a,type,
a: $o ).
thf(b,type,
b: $o ).
thf(c,type,
c: $o ).
thf(f,type,
f: $o > $i ).
thf(f1,type,
f1: $o > $i ).
thf(f2,type,
f2: $o > $i ).
thf(g,type,
g: $o > $i ).
thf(g1,type,
g1: $o > $i ).
thf(g2,type,
g2: $o > $i ).
thf(con,conjecture,
( ( ( f @ a )
= ( g @ b ) )
| ( ( f @ b )
!= ( g @ a ) )
| ( ( f1 @ a )
= ( g1 @ c ) )
| ( ( f1 @ c )
!= ( g1 @ a ) )
| ( ( f2 @ b )
= ( g2 @ c ) )
| ( ( f2 @ c )
!= ( g2 @ b ) ) ) ).
%------------------------------------------------------------------------------