TPTP Problem File: SYO481^6.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO481^6 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : Ted Sider's S5 quantified modal logic wff 07
% Version : Especial.
% English :
% Refs : [Sid09] Sider (2009), Logic for Philosophy
% Source : [Sid09]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0
% Syntax : Number of formulae : 72 ( 33 unt; 35 typ; 33 def)
% Number of atoms : 115 ( 38 equ; 0 cnn)
% Maximal formula atoms : 9 ( 3 avg)
% Number of connectives : 146 ( 5 ~; 5 |; 8 &; 120 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 1 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 178 ( 178 >; 0 *; 0 +; 0 <<)
% Number of symbols : 42 ( 40 usr; 7 con; 0-3 aty)
% Number of variables : 90 ( 54 ^; 30 !; 6 ?; 90 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for modal logic S5
include('Axioms/LCL013^0.ax').
include('Axioms/LCL013^6.ax').
%------------------------------------------------------------------------------
thf(prove,conjecture,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] :
( mforall_ind
@ ^ [Y: mu] : ( mimplies @ ( mnot @ ( meq_ind @ X @ Y ) ) @ ( mbox_s5 @ ( mnot @ ( meq_ind @ X @ Y ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------