TPTP Problem File: SYO360^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO360^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem EDEC1
% Version : Especial.
% English : A version of EDEC from [Ben99] using = instead of LeibEq.
% Refs : [Ben99] Benzmueller (1999), Equality and Extensionality in Hig
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0290 [Bro09]
% : EDEC1 [TPS]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.09 v7.5.0, 0.00 v7.4.0, 0.11 v7.3.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.40 v5.3.0, 0.60 v4.1.0, 0.67 v4.0.1, 1.00 v4.0.0
% Syntax : Number of formulae : 6 ( 0 unt; 5 typ; 0 def)
% Number of atoms : 3 ( 3 equ; 0 cnn)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 10 ( 0 ~; 0 |; 1 &; 8 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 5 avg)
% Number of types : 1 ( 1 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 3 ( 0 ^; 3 !; 0 ?; 3 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(j,type,
j: a > a ).
thf(g,type,
g: ( a > a ) > a > a ).
thf(h,type,
h: a > a ).
thf(f,type,
f: ( a > a ) > a > a ).
thf(cEDEC1,conjecture,
( ( ! [X: a > a,Y: a] :
( ( f @ X @ Y )
= ( g @ X @ Y ) )
& ! [Z: a] :
( ( h @ Z )
= ( j @ Z ) ) )
=> ( ( f @ h )
= ( g @ j ) ) ) ).
%------------------------------------------------------------------------------