TPTP Problem File: SYO356^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO356^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem E1LEIBEQ2
% Version : Especial.
% English : Example from [Ben9] about alternative defns of equality.
% Refs : [Ben99] Benzmueller (1999), Equality and Extensionality in Hig
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0196 [Bro09]
% : E1LEIBEQ2 [TPS]
% Status : Theorem
% Rating : 0.00 v8.1.0, 0.08 v7.4.0, 0.00 v7.3.0, 0.10 v7.2.0, 0.00 v6.2.0, 0.33 v6.1.0, 0.00 v5.4.0, 0.25 v4.1.0, 0.33 v4.0.1, 0.67 v4.0.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 9 ( 0 ~; 0 |; 0 &; 6 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 7 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 2 usr; 2 con; 0-0 aty)
% Number of variables : 3 ( 0 ^; 3 !; 0 ?; 3 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(v,type,
v: a ).
thf(u,type,
u: a ).
thf(cE1LEIBEQ2_pme,conjecture,
( ! [Q: a > a > $o] :
( ! [Z: a] : ( Q @ Z @ Z )
=> ( Q @ u @ v ) )
=> ! [Xq: a > $o] :
( ( Xq @ u )
=> ( Xq @ v ) ) ) ).
%------------------------------------------------------------------------------