TPTP Problem File: SYO352^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO352^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem E5EXT
% Version : Especial.
% English : Nontrivial direction of functional extensionality using Leibniz
% equality.
% Refs : [Ben99] Benzmueller (1999), Equality and Extensionality in Hig
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0100 [Bro09]
% : E5ext [Ben99]
% : E5EXT [TPS]
% Status : Theorem
% Rating : 0.00 v8.1.0, 0.08 v7.4.0, 0.00 v6.2.0, 0.33 v6.1.0, 0.17 v5.5.0, 0.20 v5.4.0, 0.25 v5.3.0, 0.50 v4.1.0, 0.67 v4.0.1, 1.00 v4.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 9 ( 0 ~; 0 |; 0 &; 6 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 7 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 2 usr; 0 con; 1-1 aty)
% Number of variables : 3 ( 0 ^; 3 !; 0 ?; 3 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(n,type,
n: $i > $i ).
thf(m,type,
m: $i > $i ).
thf(cE5EXT,conjecture,
( ! [X: $i,P: $i > $o] :
( ( P @ ( m @ X ) )
=> ( P @ ( n @ X ) ) )
=> ! [Q: ( $i > $i ) > $o] :
( ( Q @ m )
=> ( Q @ n ) ) ) ).
%------------------------------------------------------------------------------