TPTP Problem File: SYO328^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO328^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem from BASIC-HO-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1018 [Bro09]
% Status : CounterSatisfiable
% Rating : 0.00 v9.0.0, 0.33 v8.2.0, 0.00 v7.4.0, 0.33 v6.2.0, 0.00 v6.0.0, 0.33 v5.5.0, 0.00 v4.0.0
% Syntax : Number of formulae : 12 ( 0 unt; 11 typ; 0 def)
% Number of atoms : 14 ( 0 equ; 0 cnn)
% Maximal formula atoms : 14 ( 14 avg)
% Number of connectives : 38 ( 0 ~; 0 |; 5 &; 25 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 10 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 13 ( 13 >; 0 *; 0 +; 0 <<)
% Number of symbols : 10 ( 10 usr; 0 con; 1-1 aty)
% Number of variables : 9 ( 9 ^; 0 !; 0 ?; 9 :)
% SPC : TH0_CSA_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cG2_0,type,
cG2_0: a > a ).
thf(cG1_0,type,
cG1_0: a > a ).
thf(cP_0,type,
cP_0: ( a > a ) > $o ).
thf(j_7,type,
j_7: a > a ).
thf(cF_0,type,
cF_0: a > a ).
thf(j_6,type,
j_6: a > a ).
thf(p_6,type,
p_6: ( a > a ) > $o ).
thf(cJ_1,type,
cJ_1: a > a ).
thf(p_4,type,
p_4: ( a > a ) > $o ).
thf(cJ_0,type,
cJ_0: a > a ).
thf(cTHM135A_EXP,conjecture,
( ( ( ( ( p_4
@ ^ [Xu_3: a] : Xu_3 )
& ( ( p_4 @ cJ_0 )
=> ( p_4
@ ^ [Xx_4: a] : ( cF_0 @ ( cJ_0 @ Xx_4 ) ) ) ) )
=> ( p_4 @ cG1_0 ) )
& ( ( ( p_6
@ ^ [Xu_4: a] : Xu_4 )
& ( ( p_6 @ cJ_1 )
=> ( p_6
@ ^ [Xx_5: a] : ( cF_0 @ ( cJ_1 @ Xx_5 ) ) ) ) )
=> ( p_6
@ ^ [Xx: a] : ( cG2_0 @ Xx ) ) ) )
=> ( ( ( cP_0
@ ^ [Xu_5: a] : Xu_5 )
& ( ( cP_0 @ j_6 )
=> ( cP_0
@ ^ [Xx_7: a] : ( cF_0 @ ( j_6 @ Xx_7 ) ) ) )
& ( ( cP_0 @ j_7 )
=> ( cP_0
@ ^ [Xx_7: a] : ( cF_0 @ ( j_7 @ Xx_7 ) ) ) ) )
=> ( cP_0
@ ^ [Xx_6: a] : ( cG1_0 @ ( cG2_0 @ Xx_6 ) ) ) ) ) ).
%------------------------------------------------------------------------------