TPTP Problem File: SYO250^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO250^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem from BASIC-HO-EQ-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1247 [Bro09]
% Status : Theorem
% Rating : 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v6.1.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.1.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 typ; 0 def)
% Number of atoms : 90 ( 90 equ; 0 cnn)
% Maximal formula atoms : 90 ( 90 avg)
% Number of connectives : 223 ( 70 ~; 5 |; 76 &; 64 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 72 ( 72 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 13 ( 0 ^; 1 !; 12 ?; 13 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(cSIXFRIENDS,conjecture,
? [Xa: $i,Xaa: $i,Xb: $i,Xbb: $i,Xc: $i,Xcc: $i,Xd: $i,Xdd: $i,Xe: $i,Xee: $i,Xh: $i,Xhh: $i] :
( ( ( Xa != Xaa )
& ( Xa != Xb )
& ( Xa != Xbb )
& ( Xa != Xc )
& ( Xa != Xcc )
& ( Xa != Xd )
& ( Xa != Xdd )
& ( Xa != Xe )
& ( Xa != Xee )
& ( Xa != Xh )
& ( Xa != Xhh )
& ( Xaa != Xb )
& ( Xaa != Xbb )
& ( Xaa != Xc )
& ( Xaa != Xcc )
& ( Xaa != Xd )
& ( Xaa != Xdd )
& ( Xaa != Xe )
& ( Xaa != Xee )
& ( Xaa != Xh )
& ( Xaa != Xhh )
& ( Xb != Xbb )
& ( Xb != Xc )
& ( Xb != Xcc )
& ( Xb != Xd )
& ( Xb != Xdd )
& ( Xb != Xe )
& ( Xb != Xee )
& ( Xb != Xh )
& ( Xb != Xhh )
& ( Xc != Xcc )
& ( Xc != Xd )
& ( Xc != Xdd )
& ( Xc != Xe )
& ( Xc != Xee )
& ( Xc != Xh )
& ( Xc != Xhh )
& ( Xcc != Xd )
& ( Xcc != Xdd )
& ( Xcc != Xe )
& ( Xcc != Xee )
& ( Xcc != Xh )
& ( Xcc != Xhh )
& ( Xd != Xdd )
& ( Xd != Xe )
& ( Xd != Xee )
& ( Xd != Xh )
& ( Xd != Xhh )
& ( Xdd != Xe )
& ( Xdd != Xee )
& ( Xdd != Xh )
& ( Xdd != Xhh )
& ( Xe != Xee )
& ( Xe != Xh )
& ( Xe != Xhh )
& ( Xee != Xh )
& ( Xee != Xhh )
& ( Xh != Xhh ) )
=> ! [P: $i > $i] :
( ( ( ( ( ( P @ Xa )
= ( P @ Xaa ) )
& ( ( P @ Xb )
= ( P @ Xbb ) )
& ( ( P @ Xe )
= ( P @ Xhh ) ) )
=> ( ( P @ Xc )
= ( P @ Xdd ) ) )
& ( ( ( ( P @ Xa )
= ( P @ Xaa ) )
& ( ( P @ Xh )
= ( P @ Xhh ) )
& ( ( P @ Xb )
= ( P @ Xcc ) ) )
=> ( ( P @ Xd )
!= ( P @ Xee ) ) )
& ( ( ( ( P @ Xc )
= ( P @ Xcc ) )
& ( ( P @ Xcc )
= ( P @ Xd ) )
& ( ( P @ Xd )
= ( P @ Xdd ) )
& ( ( P @ Xa )
!= ( P @ Xbb ) ) )
=> ( ( P @ Xe )
!= ( P @ Xhh ) ) )
& ( ( ( ( P @ Xa )
= ( P @ Xaa ) )
& ( ( P @ Xd )
= ( P @ Xdd ) )
& ( ( P @ Xb )
!= ( P @ Xcc ) ) )
=> ( ( P @ Xe )
= ( P @ Xhh ) ) )
& ( ( ( ( P @ Xe )
= ( P @ Xee ) )
& ( ( P @ Xh )
= ( P @ Xhh ) )
& ( ( P @ Xc )
= ( P @ Xdd ) ) )
=> ( ( P @ Xa )
!= ( P @ Xbb ) ) )
& ( ( ( ( P @ Xb )
= ( P @ Xbb ) )
& ( ( P @ Xbb )
= ( P @ Xc ) )
& ( ( P @ Xc )
= ( P @ Xcc ) )
& ( ( P @ Xe )
!= ( P @ Xhh ) ) )
=> ( ( P @ Xd )
= ( P @ Xee ) ) ) )
=> ( ( ( P @ Xa )
!= ( P @ Xaa ) )
| ( ( P @ Xb )
!= ( P @ Xbb ) )
| ( ( P @ Xc )
!= ( P @ Xcc ) )
| ( ( P @ Xd )
!= ( P @ Xdd ) )
| ( ( P @ Xe )
!= ( P @ Xee ) )
| ( ( P @ Xh )
!= ( P @ Xhh ) ) ) ) ) ).
%------------------------------------------------------------------------------