TPTP Problem File: SYO248^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO248^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem from BASIC-HO-EQ-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1199 [Bro09]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.08 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.43 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.43 v6.0.0, 0.57 v5.5.0, 0.50 v5.4.0, 0.60 v4.1.0, 1.00 v4.0.0
% Syntax : Number of formulae : 13 ( 0 unt; 12 typ; 0 def)
% Number of atoms : 32 ( 32 equ; 0 cnn)
% Maximal formula atoms : 32 ( 32 avg)
% Number of connectives : 107 ( 12 ~; 5 |; 19 &; 64 @)
% ( 0 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 13 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of symbols : 13 ( 12 usr; 12 con; 0-2 aty)
% Number of variables : 1 ( 0 ^; 1 !; 0 ?; 1 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(hh,type,
hh: $i ).
thf(h,type,
h: $i ).
thf(ee,type,
ee: $i ).
thf(e,type,
e: $i ).
thf(dd,type,
dd: $i ).
thf(d,type,
d: $i ).
thf(cc,type,
cc: $i ).
thf(c,type,
c: $i ).
thf(bb,type,
bb: $i ).
thf(b,type,
b: $i ).
thf(aa,type,
aa: $i ).
thf(a,type,
a: $i ).
thf(cSIXFRIENDS_AGAIN,conjecture,
! [P: $i > $i > $o] :
( ( ( ( ( ( P @ a )
= ( P @ aa ) )
& ( ( P @ b )
= ( P @ bb ) )
& ( ( P @ e )
= ( P @ hh ) ) )
=> ( ( P @ c )
= ( P @ dd ) ) )
& ( ( ( ( P @ a )
= ( P @ aa ) )
& ( ( P @ h )
= ( P @ hh ) )
& ( ( P @ b )
= ( P @ cc ) ) )
=> ( ( P @ d )
!= ( P @ ee ) ) )
& ( ( ( ( P @ c )
= ( P @ cc ) )
& ( ( P @ cc )
= ( P @ d ) )
& ( ( P @ d )
= ( P @ dd ) )
& ( ( P @ a )
!= ( P @ bb ) ) )
=> ( ( P @ e )
!= ( P @ hh ) ) )
& ( ( ( ( P @ a )
= ( P @ aa ) )
& ( ( P @ d )
= ( P @ dd ) )
& ( ( P @ b )
!= ( P @ cc ) ) )
=> ( ( P @ e )
= ( P @ hh ) ) )
& ( ( ( ( P @ e )
= ( P @ ee ) )
& ( ( P @ h )
= ( P @ hh ) )
& ( ( P @ c )
= ( P @ dd ) ) )
=> ( ( P @ a )
!= ( P @ bb ) ) )
& ( ( ( ( P @ b )
= ( P @ bb ) )
& ( ( P @ bb )
= ( P @ c ) )
& ( ( P @ c )
= ( P @ cc ) )
& ( ( P @ e )
!= ( P @ hh ) ) )
=> ( ( P @ d )
= ( P @ ee ) ) ) )
=> ( ( ( P @ a )
!= ( P @ aa ) )
| ( ( P @ b )
!= ( P @ bb ) )
| ( ( P @ c )
!= ( P @ cc ) )
| ( ( P @ d )
!= ( P @ dd ) )
| ( ( P @ e )
!= ( P @ ee ) )
| ( ( P @ h )
!= ( P @ hh ) ) ) ) ).
%------------------------------------------------------------------------------