TPTP Problem File: SYO178^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO178^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : TPS problem from BASIC-FO-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1159 [Bro09]
% Status : Theorem
% Rating : 0.25 v8.2.0, 0.27 v8.1.0, 0.25 v7.4.0, 0.33 v7.3.0, 0.30 v7.2.0, 0.38 v7.1.0, 0.43 v7.0.0, 0.38 v6.4.0, 0.43 v6.3.0, 0.50 v6.0.0, 0.33 v5.5.0, 0.00 v5.3.0, 0.25 v5.2.0, 0.00 v5.1.0, 0.25 v5.0.0, 0.00 v4.1.0, 0.33 v4.0.0
% Syntax : Number of formulae : 12 ( 0 unt; 11 typ; 0 def)
% Number of atoms : 58 ( 0 equ; 0 cnn)
% Maximal formula atoms : 58 ( 58 avg)
% Number of connectives : 86 ( 29 ~; 40 |; 17 &; 0 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 24 ( 24 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of symbols : 11 ( 11 usr; 11 con; 0-0 aty)
% Number of variables : 0 ( 0 ^; 0 !; 0 ?; 0 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(cM,type,
cM: $o ).
thf(cN,type,
cN: $o ).
thf(cG,type,
cG: $o ).
thf(cK,type,
cK: $o ).
thf(cE,type,
cE: $o ).
thf(cR,type,
cR: $o ).
thf(cF,type,
cF: $o ).
thf(cC,type,
cC: $o ).
thf(cB,type,
cB: $o ).
thf(cP,type,
cP: $o ).
thf(cL,type,
cL: $o ).
thf(cPORKCHOP1C,conjecture,
~ ( cL
& cE
& ( ~ cF
| cB )
& ( ~ cL
| ~ cP
| cM )
& ( ~ cG
| cR
| cM )
& ( cG
| cP
| cR )
& ( ~ cK
| ~ cB
| cC )
& ( ~ cL
| ~ cM
| cC )
& ( cG
| cR
| cK )
& ( ~ cR
| ~ cE
| ~ cC )
& ( ~ cR
| cN
| cF
| cP )
& ( ~ cK
| ~ cL
| ~ cE
| ~ cM )
& ( ~ cG
| cK
| cM
| ~ cB )
& ( ~ cN
| cP
| cF
| cC )
& ( ~ cG
| ~ cB
| cR
| ~ cC )
& ( cK
| ~ cN
| ~ cM
| cF )
& ( ~ cR
| cK
| cM
| cG )
& ( ~ cE
| cK
| ~ cG
| cN
| ~ cM ) ) ).
%------------------------------------------------------------------------------