TPTP Problem File: SYO072^4.001.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO072^4.001 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Intuitionistic logic)
% Problem : ILTP Problem SYJ208+1.001
% Version : [Goe33] axioms.
% English :
% Refs : [Goe33] Goedel (1933), An Interpretation of the Intuitionistic
% : [Gol06] Goldblatt (2006), Mathematical Modal Logic: A View of
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% : [BP10] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben09]
% Names : SYJ208+1.001 [ROK06]
% Status : CounterSatisfiable
% Rating : 0.67 v9.0.0, 0.75 v8.2.0, 1.00 v8.1.0, 0.60 v7.5.0, 0.40 v7.4.0, 0.50 v7.2.0, 0.33 v6.4.0, 0.67 v6.3.0, 0.33 v5.4.0, 1.00 v5.0.0, 0.33 v4.1.0, 0.00 v4.0.0
% Syntax : Number of formulae : 46 ( 20 unt; 22 typ; 19 def)
% Number of atoms : 79 ( 19 equ; 0 cnn)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 68 ( 3 ~; 1 |; 2 &; 60 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 97 ( 97 >; 0 *; 0 +; 0 <<)
% Number of symbols : 28 ( 26 usr; 5 con; 0-3 aty)
% Number of variables : 40 ( 31 ^; 7 !; 2 ?; 40 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This is an ILTP problem embedded in TH0
% : In classical logic this is a Theorem.
%------------------------------------------------------------------------------
include('Axioms/LCL010^0.ax').
%------------------------------------------------------------------------------
thf(o11_type,type,
o11: $i > $o ).
thf(o21_type,type,
o21: $i > $o ).
thf(axiom1,axiom,
ivalid @ ( inot @ ( inot @ ( iatom @ o11 ) ) ) ).
thf(axiom2,axiom,
ivalid @ ( inot @ ( inot @ ( iatom @ o21 ) ) ) ).
thf(con,conjecture,
ivalid @ ( ior @ ( iatom @ o11 ) @ ( iatom @ o21 ) ) ).
%------------------------------------------------------------------------------