TPTP Problem File: SYO070^4.001.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO070^4.001 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Intuitionistic logic)
% Problem : ILTP Problem SYJ211+1.001
% Version : [Goe33] axioms.
% English :
% Refs : [Goe33] Goedel (1933), An Interpretation of the Intuitionistic
% : [Gol06] Goldblatt (2006), Mathematical Modal Logic: A View of
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% : [BP10] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben09]
% Names : SYJ211+1.001 [ROK06]
% Status : CounterSatisfiable
% Rating : 0.67 v9.0.0, 0.75 v8.2.0, 1.00 v8.1.0, 0.80 v7.5.0, 0.60 v7.4.0, 0.75 v7.2.0, 0.67 v6.2.0, 0.33 v5.4.0, 1.00 v5.0.0, 0.67 v4.1.0, 0.50 v4.0.1, 1.00 v4.0.0
% Syntax : Number of formulae : 50 ( 20 unt; 25 typ; 19 def)
% Number of atoms : 94 ( 19 equ; 0 cnn)
% Maximal formula atoms : 11 ( 3 avg)
% Number of connectives : 82 ( 3 ~; 1 |; 2 &; 74 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 2 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 100 ( 100 >; 0 *; 0 +; 0 <<)
% Number of symbols : 31 ( 29 usr; 5 con; 0-3 aty)
% Number of variables : 40 ( 31 ^; 7 !; 2 ?; 40 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This is an ILTP problem embedded in TH0
% : In classical logic this is a Theorem.
%------------------------------------------------------------------------------
include('Axioms/LCL010^0.ax').
%------------------------------------------------------------------------------
thf(a0_type,type,
a0: $i > $o ).
thf(a1_type,type,
a1: $i > $o ).
thf(b0_type,type,
b0: $i > $o ).
thf(b1_type,type,
b1: $i > $o ).
thf(f_type,type,
f: $i > $o ).
thf(axiom1,axiom,
ivalid @ ( iimplies @ ( iatom @ a0 ) @ ( iatom @ f ) ) ).
thf(axiom2,axiom,
ivalid @ ( iimplies @ ( iimplies @ ( inot @ ( inot @ ( iatom @ b1 ) ) ) @ ( iatom @ b0 ) ) @ ( iatom @ a1 ) ) ).
thf(axiom3,axiom,
ivalid @ ( iimplies @ ( iimplies @ ( inot @ ( inot @ ( iatom @ b0 ) ) ) @ ( iatom @ a1 ) ) @ ( iatom @ a0 ) ) ).
thf(con,conjecture,
ivalid @ ( iatom @ f ) ).
%------------------------------------------------------------------------------