TPTP Problem File: SYO066^4.004.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO066^4.004 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Intuitionistic logic)
% Problem : ILTP Problem SYJ202+1.004
% Version : [Goe33] axioms.
% English :
% Refs : [Goe33] Goedel (1933), An Interpretation of the Intuitionistic
% : [Gol06] Goldblatt (2006), Mathematical Modal Logic: A View of
% : [ROK06] Raths et al. (2006), The ILTP Problem Library for Intu
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% : [BP10] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben09]
% Names : SYJ202+1.004 [ROK06]
% Status : Theorem
% Rating : 1.00 v8.2.0, 0.92 v8.1.0, 1.00 v7.4.0, 0.89 v7.3.0, 1.00 v4.0.0
% Syntax : Number of formulae : 67 ( 20 unt; 40 typ; 19 def)
% Number of atoms : 363 ( 19 equ; 0 cnn)
% Maximal formula atoms : 240 ( 13 avg)
% Number of connectives : 349 ( 3 ~; 1 |; 2 &; 341 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 45 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 115 ( 115 >; 0 *; 0 +; 0 <<)
% Number of symbols : 46 ( 44 usr; 5 con; 0-3 aty)
% Number of variables : 40 ( 31 ^; 7 !; 2 ?; 40 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This is an ILTP problem embedded in TH0
%------------------------------------------------------------------------------
include('Axioms/LCL010^0.ax').
%------------------------------------------------------------------------------
thf(o11_type,type,
o11: $i > $o ).
thf(o12_type,type,
o12: $i > $o ).
thf(o13_type,type,
o13: $i > $o ).
thf(o14_type,type,
o14: $i > $o ).
thf(o21_type,type,
o21: $i > $o ).
thf(o22_type,type,
o22: $i > $o ).
thf(o23_type,type,
o23: $i > $o ).
thf(o24_type,type,
o24: $i > $o ).
thf(o31_type,type,
o31: $i > $o ).
thf(o32_type,type,
o32: $i > $o ).
thf(o33_type,type,
o33: $i > $o ).
thf(o34_type,type,
o34: $i > $o ).
thf(o41_type,type,
o41: $i > $o ).
thf(o42_type,type,
o42: $i > $o ).
thf(o43_type,type,
o43: $i > $o ).
thf(o44_type,type,
o44: $i > $o ).
thf(o51_type,type,
o51: $i > $o ).
thf(o52_type,type,
o52: $i > $o ).
thf(o53_type,type,
o53: $i > $o ).
thf(o54_type,type,
o54: $i > $o ).
thf(axiom1,axiom,
ivalid @ ( ior @ ( iatom @ o11 ) @ ( ior @ ( iatom @ o12 ) @ ( ior @ ( iatom @ o13 ) @ ( iatom @ o14 ) ) ) ) ).
thf(axiom2,axiom,
ivalid @ ( ior @ ( iatom @ o21 ) @ ( ior @ ( iatom @ o22 ) @ ( ior @ ( iatom @ o23 ) @ ( iatom @ o24 ) ) ) ) ).
thf(axiom3,axiom,
ivalid @ ( ior @ ( iatom @ o31 ) @ ( ior @ ( iatom @ o32 ) @ ( ior @ ( iatom @ o33 ) @ ( iatom @ o34 ) ) ) ) ).
thf(axiom4,axiom,
ivalid @ ( ior @ ( iatom @ o41 ) @ ( ior @ ( iatom @ o42 ) @ ( ior @ ( iatom @ o43 ) @ ( iatom @ o44 ) ) ) ) ).
thf(axiom5,axiom,
ivalid @ ( ior @ ( iatom @ o51 ) @ ( ior @ ( iatom @ o52 ) @ ( ior @ ( iatom @ o53 ) @ ( iatom @ o54 ) ) ) ) ).
thf(con,conjecture,
ivalid @ ( ior @ ( iand @ ( iatom @ o11 ) @ ( iatom @ o21 ) ) @ ( ior @ ( iand @ ( iatom @ o11 ) @ ( iatom @ o31 ) ) @ ( ior @ ( iand @ ( iatom @ o11 ) @ ( iatom @ o41 ) ) @ ( ior @ ( iand @ ( iatom @ o11 ) @ ( iatom @ o51 ) ) @ ( ior @ ( iand @ ( iatom @ o21 ) @ ( iatom @ o31 ) ) @ ( ior @ ( iand @ ( iatom @ o21 ) @ ( iatom @ o41 ) ) @ ( ior @ ( iand @ ( iatom @ o21 ) @ ( iatom @ o51 ) ) @ ( ior @ ( iand @ ( iatom @ o31 ) @ ( iatom @ o41 ) ) @ ( ior @ ( iand @ ( iatom @ o31 ) @ ( iatom @ o51 ) ) @ ( ior @ ( iand @ ( iatom @ o41 ) @ ( iatom @ o51 ) ) @ ( ior @ ( iand @ ( iatom @ o12 ) @ ( iatom @ o22 ) ) @ ( ior @ ( iand @ ( iatom @ o12 ) @ ( iatom @ o32 ) ) @ ( ior @ ( iand @ ( iatom @ o12 ) @ ( iatom @ o42 ) ) @ ( ior @ ( iand @ ( iatom @ o12 ) @ ( iatom @ o52 ) ) @ ( ior @ ( iand @ ( iatom @ o22 ) @ ( iatom @ o32 ) ) @ ( ior @ ( iand @ ( iatom @ o22 ) @ ( iatom @ o42 ) ) @ ( ior @ ( iand @ ( iatom @ o22 ) @ ( iatom @ o52 ) ) @ ( ior @ ( iand @ ( iatom @ o32 ) @ ( iatom @ o42 ) ) @ ( ior @ ( iand @ ( iatom @ o32 ) @ ( iatom @ o52 ) ) @ ( ior @ ( iand @ ( iatom @ o42 ) @ ( iatom @ o52 ) ) @ ( ior @ ( iand @ ( iatom @ o13 ) @ ( iatom @ o23 ) ) @ ( ior @ ( iand @ ( iatom @ o13 ) @ ( iatom @ o33 ) ) @ ( ior @ ( iand @ ( iatom @ o13 ) @ ( iatom @ o43 ) ) @ ( ior @ ( iand @ ( iatom @ o13 ) @ ( iatom @ o53 ) ) @ ( ior @ ( iand @ ( iatom @ o23 ) @ ( iatom @ o33 ) ) @ ( ior @ ( iand @ ( iatom @ o23 ) @ ( iatom @ o43 ) ) @ ( ior @ ( iand @ ( iatom @ o23 ) @ ( iatom @ o53 ) ) @ ( ior @ ( iand @ ( iatom @ o33 ) @ ( iatom @ o43 ) ) @ ( ior @ ( iand @ ( iatom @ o33 ) @ ( iatom @ o53 ) ) @ ( ior @ ( iand @ ( iatom @ o43 ) @ ( iatom @ o53 ) ) @ ( ior @ ( iand @ ( iatom @ o14 ) @ ( iatom @ o24 ) ) @ ( ior @ ( iand @ ( iatom @ o14 ) @ ( iatom @ o34 ) ) @ ( ior @ ( iand @ ( iatom @ o14 ) @ ( iatom @ o44 ) ) @ ( ior @ ( iand @ ( iatom @ o14 ) @ ( iatom @ o54 ) ) @ ( ior @ ( iand @ ( iatom @ o24 ) @ ( iatom @ o34 ) ) @ ( ior @ ( iand @ ( iatom @ o24 ) @ ( iatom @ o44 ) ) @ ( ior @ ( iand @ ( iatom @ o24 ) @ ( iatom @ o54 ) ) @ ( ior @ ( iand @ ( iatom @ o34 ) @ ( iatom @ o44 ) ) @ ( ior @ ( iand @ ( iatom @ o34 ) @ ( iatom @ o54 ) ) @ ( iand @ ( iatom @ o44 ) @ ( iatom @ o54 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------