TPTP Problem File: SYO043^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO043^2 : TPTP v9.0.0. Released v4.1.0.
% Domain : Syntactic
% Problem : Unsatisfiable basic formula 5
% Version : Especial.
% Theorem formulation : As a conjecture rather than UNS set.
% English : Variant of the Kaminski equation.
% Refs : [BS09a] Brown E. & Smolka (2009), Terminating Tableaux for the
% : [BS09b] Brown E. & Smolka (2009), Extended First-Order Logic
% : [Bro09] Brown E. (2009), Email to Geoff Sutcliffe
% Source : [BS09a]
% Names : basic5 [Bro09]
% Status : CounterSatisfiable
% Rating : 0.00 v5.4.0, 0.67 v5.0.0, 0.00 v4.1.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 13 ( 1 equ; 0 cnn)
% Maximal formula atoms : 7 ( 13 avg)
% Number of connectives : 10 ( 0 ~; 0 |; 2 &; 8 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 5 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 0 ( 0 ^; 0 !; 0 ?; 0 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : The fragment of simple type theory that restricts equations to
% base types and disallows lambda abstraction and quantification is
% decidable. This is an example.
%------------------------------------------------------------------------------
thf(f,type,
f: $o > $o ).
thf(q,type,
q: ( $o > $o ) > $o > $o ).
thf(x,type,
x: $o ).
thf(5,conjecture,
( ( q @ f @ x )
& ( f @ ( f @ x ) )
& ( ( f @ ( q @ f @ x ) )
= ( f @ x ) ) ) ).
%------------------------------------------------------------------------------