TPTP Problem File: SYO042^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO042^2 : TPTP v9.0.0. Released v4.1.0.
% Domain : Syntactic
% Problem : Unsatisfiable basic formula 4
% Version : Especial.
% Theorem formulation : As a conjecture rather than UNS set.
% English : Negation is the unique function g such that g x = y and g y = x
% for x,y:o distinct.
% Refs : [BS09a] Brown E. & Smolka (2009), Terminating Tableaux for the
% : [BS09b] Brown E. & Smolka (2009), Extended First-Order Logic
% : [Bro09] Brown E. (2009), Email to Geoff Sutcliffe
% Source : [BS09a]
% Names : basic4 [Bro09]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.38 v8.1.0, 0.36 v7.5.0, 0.29 v7.4.0, 0.33 v7.2.0, 0.25 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.57 v6.1.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.60 v5.1.0, 0.80 v5.0.0, 0.60 v4.1.0
% Syntax : Number of formulae : 5 ( 0 unt; 4 typ; 0 def)
% Number of atoms : 15 ( 3 equ; 1 cnn)
% Maximal formula atoms : 7 ( 15 avg)
% Number of connectives : 12 ( 4 ~; 0 |; 4 &; 4 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 8 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 0 ( 0 ^; 0 !; 0 ?; 0 :)
% SPC : TH0_THM_EQU_NAR
% Comments : The fragment of simple type theory that restricts equations to
% base types and disallows lambda abstraction and quantification is
% decidable. This is an example.
%------------------------------------------------------------------------------
thf(g,type,
g: $o > $o ).
thf(p,type,
p: ( $o > $o ) > $o ).
thf(x,type,
x: $o ).
thf(y,type,
y: $o ).
thf(4,conjecture,
~ ( ( x != y )
& ( ( g @ x )
= y )
& ( ( g @ y )
= x )
& ( p @ g )
& ~ ( p @ (~) ) ) ).
%------------------------------------------------------------------------------