TPTP Problem File: SYO041^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO041^1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Syntactic
% Problem : Unsatisfiable basic formula 3
% Version : Especial.
% English :
% Refs : [BS09a] Brown E. & Smolka (2009), Terminating Tableaux for the
% : [BS09b] Brown E. & Smolka (2009), Extended First-Order Logic
% Source : [BS09a]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v5.4.0, 0.33 v5.3.0, 0.67 v4.1.0, 1.00 v4.0.0
% Syntax : Number of formulae : 6 ( 0 unt; 5 typ; 0 def)
% Number of atoms : 19 ( 4 equ; 0 cnn)
% Maximal formula atoms : 4 ( 19 avg)
% Number of connectives : 11 ( 1 ~; 0 |; 3 &; 7 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 0 ( 0 ^; 0 !; 0 ?; 0 :)
% SPC : TH0_UNS_EQU_NAR
% Comments : The fragment of simple type theory that restricts equations to
% base types and disallows lambda abstraction and quantification is
% decidable. This is an example.
%------------------------------------------------------------------------------
thf(a,type,
a: $o ).
thf(f,type,
f: $o > $o ).
thf(g,type,
g: $o > $o ).
thf(x,type,
x: $o ).
thf(y,type,
y: $o ).
thf(3,axiom,
( ( x != y )
& ( ( g @ x )
= y )
& ( ( g @ y )
= x )
& ( ( f @ ( f @ ( f @ x ) ) )
= ( g @ ( f @ x ) ) ) ) ).
%------------------------------------------------------------------------------