TPTP Problem File: SYO040^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO040^2 : TPTP v9.0.0. Released v4.1.0.
% Domain : Syntactic
% Problem : Unsatisfiable basic formula 2
% Version : Especial.
% Theorem formulation : As a conjecture rather than UNS set.
% English : Variant of the Kaminski equation.
% Refs : [BS09a] Brown E. & Smolka (2009), Terminating Tableaux for the
% : [BS09b] Brown E. & Smolka (2009), Extended First-Order Logic
% : [Bro09] Brown E. (2009), Email to Geoff Sutcliffe
% Source : [BS09a]
% Names : basic2 [Bro09]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.08 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v6.0.0, 0.57 v5.5.0, 0.50 v5.4.0, 0.60 v4.1.0
% Syntax : Number of formulae : 4 ( 1 unt; 3 typ; 0 def)
% Number of atoms : 7 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 7 avg)
% Number of connectives : 6 ( 0 ~; 0 |; 0 &; 6 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 0 ( 0 ^; 0 !; 0 ?; 0 :)
% SPC : TH0_THM_EQU_NAR
% Comments : The fragment of simple type theory that restricts equations to
% base types and disallows lambda abstraction and quantification is
% decidable. This is an example.
%------------------------------------------------------------------------------
thf(f,type,
f: $o > $o ).
thf(h,type,
h: $o > $i ).
thf(x,type,
x: $o ).
thf(2,conjecture,
( ( h @ ( f @ ( f @ ( f @ x ) ) ) )
= ( h @ ( f @ x ) ) ) ).
%------------------------------------------------------------------------------