TPTP Problem File: SYO038-1.003.003.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO038-1.003.003 : TPTP v9.0.0. Released v5.3.0.
% Domain : Syntactic
% Problem : Boolos' Curious Inference, size f(3,3)
% Version : Especial.
% English :
% Refs : [Boo87] Boolos (1987), A Curious Inference
% : [BB05] Benzmueller & Brown (2005), A Structured Set of Higher
% : [BB07] Benzmueller & Brown (2007), The Curious Inference of B
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% Source : [Ben09]
% Names : Example 35 [BB05]
% Status : Unsatisfiable
% Rating : 0.00 v7.0.0, 0.14 v6.3.0, 0.00 v6.0.0, 0.11 v5.5.0, 0.38 v5.4.0, 0.40 v5.3.0
% Syntax : Number of clauses : 6 ( 5 unt; 0 nHn; 3 RR)
% Number of literals : 7 ( 3 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 5 ( 1 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : The first order proof is infeasibly long - f(5,5) is huge. It is
% a number that makes googolplex look tiny. Practically impossible
% to solve using only first-order means. However, there exists a
% proof in higher-order logic that is very short but hard to find.
% : THF0 syntax
% : f(3,3) is 16. Relatively easy.
%------------------------------------------------------------------------------
cnf(ax1,axiom,
f(N,one) = s(one) ).
cnf(ax2,axiom,
f(one,s(X)) = s(s(f(one,X))) ).
cnf(ax3,axiom,
f(s(N),s(X)) = f(N,f(s(N),X)) ).
cnf(ax4,axiom,
d(one) ).
cnf(ax5,axiom,
( ~ d(X)
| d(s(X)) ) ).
cnf(conj,negated_conjecture,
~ d(f(s(s(one)),s(s(one)))) ).
%------------------------------------------------------------------------------