TPTP Problem File: SYN984^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYN984^1 : TPTP v9.0.0. Released v3.6.0.
% Domain : Syntactic
% Problem : Factoring application over conjunction with lambda
% Version : Especial.
% English : Variation of BB-1 with functional extensionality
% Refs : [BB05] Benzmueller & Brown (2005), A Structured Set of Higher-Ord
% : [Ben08] Benzmueller (2008), Email to G. Sutcliffe
% Source : [Ben08]
% Names : BB-2 [Ben08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.08 v8.2.0, 0.09 v8.1.0, 0.08 v7.4.0, 0.11 v7.3.0, 0.10 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.12 v6.4.0, 0.14 v6.3.0, 0.17 v6.2.0, 0.33 v6.1.0, 0.17 v5.5.0, 0.20 v5.4.0, 0.25 v5.3.0, 0.50 v4.1.0, 0.67 v4.0.0, 0.33 v3.7.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 7 ( 0 equ; 0 cnn)
% Maximal formula atoms : 7 ( 7 avg)
% Number of connectives : 6 ( 0 ~; 0 |; 2 &; 3 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 5 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 3 usr; 2 con; 0-1 aty)
% Number of variables : 3 ( 3 ^; 0 !; 0 ?; 3 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : LEO-II can prove this theorem in 0.02 seconds
% : Requires Boolean extensionality and functional extensionality
% :
%------------------------------------------------------------------------------
thf(a_const,type,
a: $o ).
thf(b_const,type,
b: $o ).
thf(p_const,type,
p: ( $i > $o ) > $o ).
thf(thm,conjecture,
( ( ( p
@ ^ [X: $i] : a )
& ( p
@ ^ [X: $i] : b ) )
=> ( p
@ ^ [X: $i] :
( a
& b ) ) ) ).
%------------------------------------------------------------------------------