TPTP Problem File: SYN783-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN783-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Syntactic (Translated)
% Problem : PSAT inverse - K=4 C=30 V=8 D=2.8
% Version : Especial.
% English :
% Refs : [Sch99] Schmidt (1999), Decidability by Resolution for Proposit
% : [HS00a] Hustadt & Schmidt (2000), MSPASS: Modal Reasoning by Tr
% : [HS00b] Hustadt & Schmidt (2000), Issues of Decidability for De
% : [Sch01] Schmidt (2001), Email to G. Sutcliffe
% Source : [Sch01]
% Names : p-psat-inv-cnf-K4-C30-V8-D2.8 [Sch01]
% Status : Satisfiable
% Rating : 0.00 v5.5.0, 0.25 v5.4.0, 0.56 v5.3.0, 0.57 v5.0.0, 0.38 v4.1.0, 0.29 v4.0.0, 0.38 v3.5.0, 0.43 v3.4.0, 0.50 v3.3.0, 0.67 v3.2.0, 0.80 v3.1.0, 0.71 v2.7.0, 0.80 v2.6.0, 0.75 v2.5.0
% Syntax : Number of clauses : 32 ( 2 unt; 21 nHn; 30 RR)
% Number of literals : 238 ( 0 equ; 174 neg)
% Maximal clause size : 10 ( 7 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 9 ( 9 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-1 aty)
% Number of variables : 148 ( 0 sgn)
% SPC : CNF_SAT_RFO_NEQ
% Comments : The relational translation for the PSAT inverse problem.
%--------------------------------------------------------------------------
cnf(clause1,negated_conjecture,
ssRr(skf3(U),U) ).
cnf(clause2,negated_conjecture,
ssRr(U,skf2(U)) ).
cnf(clause3,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(V,W)
| ssPv3(U)
| ssPv4(W)
| ssPv5(W)
| ssPv6(W) ) ).
cnf(clause4,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(V,W)
| ssPv6(U)
| ssPv2(W)
| ssPv4(W)
| ssPv5(W) ) ).
cnf(clause5,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv2(U)
| ~ ssRr(V,W)
| ~ ssPv3(W)
| ssPv2(W)
| ssPv8(W) ) ).
cnf(clause6,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(W,U)
| ~ ssRr(W,X)
| ~ ssPv8(W)
| ssPv2(V)
| ssPv3(X)
| ssPv7(W) ) ).
cnf(clause7,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(V,W)
| ~ ssRr(X,W)
| ~ ssPv5(X)
| ssPv4(U)
| ssPv5(W)
| ssPv6(W) ) ).
cnf(clause8,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(W,X)
| ~ ssPv7(X)
| ~ ssRr(V,W)
| ssPv5(U)
| ssPv2(V)
| ssPv5(V) ) ).
cnf(clause9,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(V,W)
| ~ ssRr(X,W)
| ~ ssPv7(X)
| ~ ssPv8(W)
| ssPv7(U)
| ssPv2(W) ) ).
cnf(clause10,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(V,W)
| ~ ssRr(X,W)
| ~ ssPv6(X)
| ~ ssPv8(W)
| ssPv7(U)
| ssPv7(W) ) ).
cnf(clause11,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(W,X)
| ~ ssPv8(X)
| ~ ssRr(V,W)
| ~ ssPv3(V)
| ~ ssPv8(V)
| ssPv7(U) ) ).
cnf(clause12,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv4(U)
| ~ ssRr(V,W)
| ~ ssRr(X,W)
| ~ ssPv1(W)
| ~ ssPv8(W)
| ssPv1(X) ) ).
cnf(clause13,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv3(U)
| ~ ssRr(V,W)
| ~ ssRr(W,X)
| ~ ssPv7(X)
| ~ ssPv7(W)
| ssPv2(W) ) ).
cnf(clause14,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv6(U)
| ~ ssRr(V,W)
| ~ ssRr(W,X)
| ~ ssPv7(X)
| ~ ssPv6(W)
| ssPv5(W) ) ).
cnf(clause15,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv4(U)
| ~ ssRr(W,X)
| ~ ssPv3(X)
| ~ ssRr(V,W)
| ~ ssPv1(V)
| ~ ssPv4(V) ) ).
cnf(clause16,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv2(U)
| ~ ssRr(V,W)
| ~ ssRr(W,X)
| ~ ssPv2(X)
| ~ ssPv2(W)
| ~ ssPv4(W) ) ).
cnf(clause17,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(V,W)
| ~ ssRr(X,Y)
| ~ ssRr(W,X)
| ssPv4(U)
| ssPv5(Y)
| ssPv1(W)
| ssPv8(W) ) ).
cnf(clause18,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv5(U)
| ~ ssRr(V,W)
| ~ ssRr(X,Y)
| ~ ssRr(Y,W)
| ~ ssPv6(W)
| ssPv7(X)
| ssPv4(W) ) ).
cnf(clause19,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv1(U)
| ~ ssRr(V,W)
| ~ ssRr(X,W)
| ~ ssRr(W,Y)
| ~ ssPv4(Y)
| ssPv5(X)
| ssPv8(W) ) ).
cnf(clause20,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv8(V)
| ~ ssRr(W,U)
| ~ ssRr(X,Y)
| ~ ssRr(W,X)
| ~ ssPv8(W)
| ssPv4(Y)
| ssPv6(W) ) ).
cnf(clause21,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv6(U)
| ~ ssRr(V,W)
| ~ ssRr(X,Y)
| ~ ssRr(W,X)
| ~ ssPv5(W)
| ssPv4(Y)
| ssPv8(W) ) ).
cnf(clause22,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(V,W)
| ~ ssRr(X,Y)
| ~ ssRr(Y,W)
| ~ ssPv2(W)
| ~ ssPv4(W)
| ssPv7(U)
| ssPv6(X) ) ).
cnf(clause23,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv5(V)
| ~ ssRr(W,U)
| ~ ssRr(W,X)
| ~ ssPv7(X)
| ~ ssRr(W,Y)
| ~ ssPv4(Y)
| ~ ssPv1(W) ) ).
cnf(clause24,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(V,W)
| ~ ssRr(X,Y)
| ~ ssRr(Y,W)
| ~ ssRr(Z,W)
| ~ ssPv2(Z)
| ssPv8(U)
| ssPv7(X)
| ssPv8(W) ) ).
cnf(clause25,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(V,W)
| ~ ssRr(X,W)
| ~ ssPv3(X)
| ~ ssRr(Y,Z)
| ~ ssRr(W,Y)
| ssPv5(U)
| ssPv4(Z)
| ssPv2(W) ) ).
cnf(clause26,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(V,W)
| ~ ssRr(X,W)
| ~ ssRr(Y,Z)
| ~ ssRr(W,Y)
| ~ ssPv2(W)
| ssPv2(U)
| ssPv2(X)
| ssPv8(Z) ) ).
cnf(clause27,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv1(U)
| ~ ssRr(V,W)
| ~ ssRr(X,W)
| ~ ssRr(Y,Z)
| ~ ssRr(W,Y)
| ~ ssPv3(W)
| ssPv5(X)
| ssPv2(Z) ) ).
cnf(clause28,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv5(U)
| ~ ssRr(V,W)
| ~ ssRr(X,Y)
| ~ ssPv6(Y)
| ~ ssRr(W,X)
| ~ ssRr(W,Z)
| ~ ssPv7(W)
| ssPv1(Z) ) ).
cnf(clause29,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv5(U)
| ~ ssRr(V,W)
| ~ ssRr(X,Y)
| ~ ssRr(Y,W)
| ~ ssRr(Z,X1)
| ~ ssRr(W,Z)
| ssPv6(X)
| ssPv5(X1)
| ssPv3(W) ) ).
cnf(clause30,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(V,W)
| ~ ssRr(X,Y)
| ~ ssPv5(Y)
| ~ ssRr(W,X)
| ~ ssRr(Z,X1)
| ~ ssRr(W,Z)
| ssPv5(U)
| ssPv8(X1)
| ssPv8(W) ) ).
cnf(clause31,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv8(U)
| ~ ssRr(V,W)
| ~ ssRr(X,Y)
| ~ ssRr(Y,W)
| ~ ssRr(Z,X1)
| ~ ssPv4(X1)
| ~ ssRr(W,Z)
| ssPv2(X)
| ssPv5(W) ) ).
cnf(clause32,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv7(U)
| ~ ssRr(V,W)
| ~ ssRr(X,Y)
| ~ ssPv6(Y)
| ~ ssRr(W,X)
| ~ ssRr(Z,X1)
| ~ ssPv4(X1)
| ~ ssRr(W,Z)
| ssPv5(W) ) ).
%--------------------------------------------------------------------------