TPTP Problem File: SYN772-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN772-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Syntactic (Translated)
% Problem : PSAT inverse problem - K=4 C=20 V=8 D=1.6
% Version : Especial.
% English :
% Refs : [Sch99] Schmidt (1999), Decidability by Resolution for Proposit
% : [HS00a] Hustadt & Schmidt (2000), MSPASS: Modal Reasoning by Tr
% : [HS00b] Hustadt & Schmidt (2000), Issues of Decidability for De
% : [Sch01] Schmidt (2001), Email to G. Sutcliffe
% Source : [Sch01]
% Names : p-psat-inv-cnf-K4-C20-V8-D1.6 [Sch01]
% Status : Satisfiable
% Rating : 0.00 v3.1.0, 0.14 v2.7.0, 0.00 v2.5.0
% Syntax : Number of clauses : 22 ( 2 unt; 15 nHn; 20 RR)
% Number of literals : 117 ( 0 equ; 72 neg)
% Maximal clause size : 7 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 9 ( 9 usr; 0 prp; 1-2 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-1 aty)
% Number of variables : 57 ( 0 sgn)
% SPC : CNF_SAT_RFO_NEQ
% Comments : The relational translation for the PSAT inverse problem.
%--------------------------------------------------------------------------
cnf(clause1,negated_conjecture,
ssRr(skf3(U),U) ).
cnf(clause2,negated_conjecture,
ssRr(U,skf2(U)) ).
cnf(clause3,negated_conjecture,
( ~ ssRr(U,V)
| ssPv3(V)
| ssPv3(U)
| ssPv5(U)
| ssPv8(U) ) ).
cnf(clause4,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv7(U)
| ssPv2(V)
| ssPv5(U)
| ssPv8(U) ) ).
cnf(clause5,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv2(U)
| ssPv1(V)
| ssPv6(V)
| ssPv7(V) ) ).
cnf(clause6,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv3(U)
| ~ ssPv4(U)
| ssPv8(V)
| ssPv5(U) ) ).
cnf(clause7,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv1(V)
| ~ ssPv4(U)
| ssPv5(U)
| ssPv6(U) ) ).
cnf(clause8,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv6(V)
| ~ ssPv7(V)
| ~ ssPv8(V)
| ssPv2(U) ) ).
cnf(clause9,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv4(V)
| ~ ssPv3(U)
| ~ ssPv8(U)
| ssPv2(U) ) ).
cnf(clause10,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(V,W)
| ssPv8(U)
| ssPv6(W)
| ssPv4(V)
| ssPv8(V) ) ).
cnf(clause11,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(U,W)
| ~ ssPv3(U)
| ssPv8(V)
| ssPv2(W)
| ssPv4(U) ) ).
cnf(clause12,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv1(V)
| ~ ssRr(U,W)
| ~ ssPv6(U)
| ssPv5(W)
| ssPv8(U) ) ).
cnf(clause13,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv5(V)
| ~ ssRr(U,W)
| ~ ssPv5(U)
| ssPv7(W)
| ssPv8(U) ) ).
cnf(clause14,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv4(V)
| ~ ssRr(U,W)
| ~ ssPv5(U)
| ssPv3(W)
| ssPv7(U) ) ).
cnf(clause15,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv8(U)
| ~ ssRr(W,V)
| ~ ssPv8(V)
| ssPv3(W)
| ssPv6(V) ) ).
cnf(clause16,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv6(U)
| ~ ssRr(W,V)
| ~ ssPv1(V)
| ssPv7(W)
| ssPv3(V) ) ).
cnf(clause17,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv3(U)
| ~ ssRr(W,V)
| ~ ssPv3(V)
| ssPv5(W)
| ssPv2(V) ) ).
cnf(clause18,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(V,W)
| ~ ssPv7(W)
| ~ ssPv7(V)
| ssPv8(U)
| ssPv1(V) ) ).
cnf(clause19,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv6(V)
| ~ ssRr(U,W)
| ~ ssPv5(U)
| ~ ssPv7(U)
| ssPv8(W) ) ).
cnf(clause20,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv5(U)
| ~ ssRr(W,V)
| ~ ssPv3(W)
| ~ ssPv3(V)
| ssPv5(V) ) ).
cnf(clause21,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(V,W)
| ~ ssPv3(W)
| ~ ssRr(V,X)
| ssPv4(U)
| ssPv6(X)
| ssPv7(V) ) ).
cnf(clause22,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv5(V)
| ~ ssRr(U,W)
| ~ ssPv4(W)
| ~ ssRr(U,X)
| ~ ssPv6(U)
| ssPv7(X) ) ).
%--------------------------------------------------------------------------