TPTP Problem File: SYN736-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN736-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Syntactic (Translated)
% Problem : PSAT - K=4 C=20 V=4 D=2.1
% Version : Especial.
% English :
% Refs : [Sch99] Schmidt (1999), Decidability by Resolution for Proposit
% : [HS00a] Hustadt & Schmidt (2000), MSPASS: Modal Reasoning by Tr
% : [HS00b] Hustadt & Schmidt (2000), Issues of Decidability for De
% : [Sch01] Schmidt (2001), Email to G. Sutcliffe
% Source : [Sch01]
% Names : p-psat-cnf-K4-C20-V4-D2.1 [Sch01]
% Status : Satisfiable
% Rating : 0.00 v5.5.0, 0.25 v5.4.0, 0.33 v5.3.0, 0.29 v5.0.0, 0.25 v4.1.0, 0.14 v4.0.0, 0.25 v3.5.0, 0.43 v3.4.0, 0.33 v3.3.0, 0.17 v3.2.0, 0.20 v3.1.0, 0.43 v2.7.0, 0.40 v2.6.0, 0.50 v2.5.0
% Syntax : Number of clauses : 21 ( 1 unt; 13 nHn; 20 RR)
% Number of literals : 170 ( 0 equ; 129 neg)
% Maximal clause size : 10 ( 8 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 1-1 aty)
% Number of variables : 110 ( 0 sgn)
% SPC : CNF_SAT_RFO_NEQ
% Comments : The relational translation for the PSAT problem.
%--------------------------------------------------------------------------
cnf(clause1,negated_conjecture,
ssRr(U,skf1(U)) ).
cnf(clause2,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv4(V)
| ~ ssRr(W,U)
| ssPv1(W)
| ssPv2(W)
| ssPv3(W) ) ).
cnf(clause3,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(W,U)
| ~ ssRr(W,X)
| ssPv3(V)
| ssPv3(X)
| ssPv1(W)
| ssPv2(W) ) ).
cnf(clause4,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(W,U)
| ~ ssRr(W,X)
| ~ ssPv1(W)
| ssPv1(V)
| ssPv3(X)
| ssPv4(W) ) ).
cnf(clause5,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv1(V)
| ~ ssRr(W,U)
| ~ ssRr(W,X)
| ~ ssPv2(X)
| ssPv2(W)
| ssPv3(W) ) ).
cnf(clause6,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(W,U)
| ~ ssRr(W,X)
| ~ ssPv4(X)
| ~ ssRr(W,Y)
| ssPv2(V)
| ssPv3(Y)
| ssPv4(W) ) ).
cnf(clause7,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(W,U)
| ~ ssRr(W,X)
| ~ ssRr(W,Y)
| ~ ssPv4(W)
| ssPv3(V)
| ssPv3(X)
| ssPv2(Y) ) ).
cnf(clause8,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(W,U)
| ~ ssRr(W,X)
| ~ ssPv4(X)
| ~ ssRr(W,Y)
| ~ ssPv3(W)
| ssPv4(V)
| ssPv4(Y) ) ).
cnf(clause9,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv3(V)
| ~ ssRr(W,U)
| ~ ssRr(X,Y)
| ~ ssRr(W,X)
| ~ ssPv3(W)
| ssPv4(Y)
| ssPv1(W) ) ).
cnf(clause10,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv4(V)
| ~ ssRr(W,U)
| ~ ssRr(X,Y)
| ~ ssRr(W,X)
| ~ ssPv2(W)
| ssPv3(Y)
| ssPv3(W) ) ).
cnf(clause11,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv3(V)
| ~ ssRr(W,U)
| ~ ssRr(W,X)
| ~ ssPv2(X)
| ~ ssRr(W,Y)
| ~ ssPv1(W)
| ssPv3(Y) ) ).
cnf(clause12,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssRr(W,U)
| ~ ssRr(X,Y)
| ~ ssRr(W,X)
| ~ ssRr(W,Z)
| ~ ssPv4(Z)
| ssPv4(V)
| ssPv1(Y)
| ssPv3(W) ) ).
cnf(clause13,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv4(V)
| ~ ssRr(W,U)
| ~ ssRr(X,Y)
| ~ ssPv2(Y)
| ~ ssRr(W,X)
| ~ ssRr(W,Z)
| ssPv3(Z)
| ssPv3(W) ) ).
cnf(clause14,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv3(V)
| ~ ssRr(W,U)
| ~ ssRr(X,Y)
| ~ ssPv1(Y)
| ~ ssRr(W,X)
| ~ ssRr(W,Z)
| ~ ssPv3(Z)
| ssPv4(W) ) ).
cnf(clause15,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv4(V)
| ~ ssRr(W,U)
| ~ ssRr(X,Y)
| ~ ssPv2(Y)
| ~ ssRr(W,X)
| ~ ssRr(W,Z)
| ~ ssPv3(W)
| ssPv1(Z) ) ).
cnf(clause16,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv3(V)
| ~ ssRr(W,U)
| ~ ssRr(X,Y)
| ~ ssPv2(Y)
| ~ ssRr(W,X)
| ~ ssRr(W,Z)
| ~ ssPv4(W)
| ssPv2(Z) ) ).
cnf(clause17,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv4(V)
| ~ ssRr(W,U)
| ~ ssRr(X,Y)
| ~ ssPv1(Y)
| ~ ssRr(W,X)
| ~ ssRr(W,Z)
| ~ ssPv1(Z)
| ~ ssPv4(W) ) ).
cnf(clause18,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv3(V)
| ~ ssRr(W,U)
| ~ ssRr(X,Y)
| ~ ssRr(W,X)
| ~ ssRr(Z,X1)
| ~ ssRr(W,Z)
| ssPv4(Y)
| ssPv2(X1)
| ssPv3(W) ) ).
cnf(clause19,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv4(V)
| ~ ssRr(W,U)
| ~ ssRr(X,Y)
| ~ ssPv2(Y)
| ~ ssRr(W,X)
| ~ ssRr(Z,X1)
| ~ ssRr(W,Z)
| ssPv2(X1)
| ssPv4(W) ) ).
cnf(clause20,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv4(V)
| ~ ssRr(W,U)
| ~ ssRr(X,Y)
| ~ ssPv2(Y)
| ~ ssRr(W,X)
| ~ ssRr(Z,X1)
| ~ ssPv1(X1)
| ~ ssRr(W,Z)
| ssPv2(W) ) ).
cnf(clause21,negated_conjecture,
( ~ ssRr(U,V)
| ~ ssPv4(V)
| ~ ssRr(W,U)
| ~ ssRr(X,Y)
| ~ ssPv3(Y)
| ~ ssRr(W,X)
| ~ ssRr(Z,X1)
| ~ ssRr(W,Z)
| ~ ssPv2(W)
| ssPv3(X1) ) ).
%--------------------------------------------------------------------------