TPTP Problem File: SYN549+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN549+1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Syntactic (Translated)
% Problem : dia box(dia(p or dia q) <=> (dia p or dia q))
% Version : Especial.
% English :
% Refs : [Wei94] Weidenbach (1994), Email to G. Sutcliffe
% : [Che80] Chellas (1980), Modal Logic
% Source : [Wei94]
% Names :
% Status : Theorem
% Rating : 0.27 v9.0.0, 0.06 v8.2.0, 0.20 v8.1.0, 0.07 v7.5.0, 0.10 v7.4.0, 0.06 v7.3.0, 0.00 v6.4.0, 0.14 v6.3.0, 0.23 v6.2.0, 0.27 v6.1.0, 0.16 v6.0.0, 0.00 v5.5.0, 0.29 v5.4.0, 0.22 v5.2.0, 0.14 v5.1.0, 0.07 v5.0.0, 0.10 v4.1.0, 0.11 v4.0.1, 0.05 v4.0.0, 0.10 v3.7.0, 0.33 v3.5.0, 0.12 v3.4.0, 0.08 v3.3.0, 0.11 v3.2.0, 0.33 v3.1.0, 0.17 v2.7.0, 0.00 v2.5.0, 0.33 v2.4.0, 0.33 v2.2.1
% Syntax : Number of formulae : 3 ( 1 unt; 0 def)
% Number of atoms : 14 ( 0 equ)
% Maximal formula atoms : 10 ( 4 avg)
% Number of connectives : 11 ( 0 ~; 2 |; 6 &)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 6 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 10 ( 5 !; 5 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : These are modal logic problems translated to FOF. The problems
% can be easily solved by theorem proving methods for modal logic,
% but their (naive) translation into first-order logic results in
% hard first-order problems. The first-order translation of the
% box, diamond operators is:
% [box P]x := (all y R(x,y) -> [P]y)
% [dia P]x := (exists R(x,y) & [P]y)
% [P]x := P(x) if P is an atom
% where we start with some initial context 'o' (the initial world),
% i.e. we translate a formula P into [P]o. [Wei94]
%--------------------------------------------------------------------------
fof(reflexivity_of_reachable,axiom,
! [X] : reachable(X,X) ).
fof(transitivity_of_reachable,axiom,
! [X,Y,Z] :
( ( reachable(X,Y)
& reachable(Y,Z) )
=> reachable(X,Z) ) ).
%---- (exists x (R(o,x) & (all y (R(x,y) -> ((exists z (R(y,z) & (P(z) |
%---- (exists v (R(z,v) & Q(v))))))
%---- <-> ((exists w (R(y,w) & P(w))) | (exists w (R(y,w) & Q(w))))))))).
fof(prove_this,conjecture,
? [X] :
( reachable(initial_world,X)
& ! [Y] :
( reachable(X,Y)
=> ( ? [Z] :
( reachable(Y,Z)
& ( p(Z)
| ? [V] :
( reachable(Z,V)
& q(V) ) ) )
<=> ( ? [W] :
( reachable(Y,W)
& p(W) )
| ? [W] :
( reachable(Y,W)
& q(W) ) ) ) ) ) ).
%--------------------------------------------------------------------------