TPTP Problem File: SYN543+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN543+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=6, R=1, L=60, K=3, D=1, P=0, Index=088
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-6-1-60-3-1-088.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v5.5.0, 0.40 v5.3.0, 0.50 v5.0.0, 0.33 v4.1.0, 0.67 v4.0.1, 0.33 v3.7.0, 0.00 v3.5.0, 0.25 v3.4.0, 0.33 v3.2.0, 0.50 v3.1.0, 0.67 v2.6.0, 0.75 v2.5.0, 0.67 v2.4.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 804 ( 0 equ)
% Maximal formula atoms : 804 ( 804 avg)
% Number of connectives : 1104 ( 301 ~; 384 |; 319 &)
% ( 0 <=>; 100 =>; 0 <=; 0 <~>)
% Maximal formula depth : 128 ( 128 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 72 ( 72 usr; 66 prp; 0-1 aty)
% Number of functors : 65 ( 65 usr; 65 con; 0-0 aty)
% Number of variables : 100 ( 100 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& c4_1(a80)
& c5_1(a80)
& ~ c1_1(a80) ) )
& ( ~ hskp1
| ( ndr1_0
& ~ c1_1(a81)
& ~ c4_1(a81)
& ~ c5_1(a81) ) )
& ( ~ hskp2
| ( ndr1_0
& c2_1(a82)
& ~ c0_1(a82)
& ~ c1_1(a82) ) )
& ( ~ hskp3
| ( ndr1_0
& c5_1(a84)
& ~ c3_1(a84)
& ~ c4_1(a84) ) )
& ( ~ hskp4
| ( ndr1_0
& c0_1(a85)
& c4_1(a85)
& ~ c2_1(a85) ) )
& ( ~ hskp5
| ( ndr1_0
& c2_1(a86)
& c4_1(a86)
& ~ c3_1(a86) ) )
& ( ~ hskp6
| ( ndr1_0
& c2_1(a87)
& c3_1(a87)
& ~ c0_1(a87) ) )
& ( ~ hskp7
| ( ndr1_0
& c1_1(a89)
& c3_1(a89)
& ~ c0_1(a89) ) )
& ( ~ hskp8
| ( ndr1_0
& c1_1(a90)
& ~ c2_1(a90)
& ~ c4_1(a90) ) )
& ( ~ hskp9
| ( ndr1_0
& ~ c1_1(a91)
& ~ c2_1(a91)
& ~ c3_1(a91) ) )
& ( ~ hskp10
| ( ndr1_0
& c3_1(a92)
& ~ c0_1(a92)
& ~ c4_1(a92) ) )
& ( ~ hskp11
| ( ndr1_0
& c0_1(a93)
& ~ c3_1(a93)
& ~ c5_1(a93) ) )
& ( ~ hskp12
| ( ndr1_0
& c3_1(a94)
& ~ c1_1(a94)
& ~ c4_1(a94) ) )
& ( ~ hskp13
| ( ndr1_0
& c0_1(a95)
& c2_1(a95)
& ~ c5_1(a95) ) )
& ( ~ hskp14
| ( ndr1_0
& c5_1(a96)
& ~ c1_1(a96)
& ~ c2_1(a96) ) )
& ( ~ hskp15
| ( ndr1_0
& c2_1(a97)
& c5_1(a97)
& ~ c3_1(a97) ) )
& ( ~ hskp16
| ( ndr1_0
& c0_1(a98)
& c3_1(a98)
& ~ c4_1(a98) ) )
& ( ~ hskp17
| ( ndr1_0
& c3_1(a99)
& c4_1(a99)
& ~ c5_1(a99) ) )
& ( ~ hskp18
| ( ndr1_0
& c3_1(a100)
& ~ c0_1(a100)
& ~ c5_1(a100) ) )
& ( ~ hskp19
| ( ndr1_0
& c3_1(a103)
& ~ c1_1(a103)
& ~ c5_1(a103) ) )
& ( ~ hskp20
| ( ndr1_0
& c0_1(a105)
& c1_1(a105)
& ~ c5_1(a105) ) )
& ( ~ hskp21
| ( ndr1_0
& c2_1(a106)
& c3_1(a106)
& ~ c4_1(a106) ) )
& ( ~ hskp22
| ( ndr1_0
& ~ c0_1(a108)
& ~ c3_1(a108)
& ~ c5_1(a108) ) )
& ( ~ hskp23
| ( ndr1_0
& c1_1(a109)
& ~ c3_1(a109)
& ~ c4_1(a109) ) )
& ( ~ hskp24
| ( ndr1_0
& c2_1(a111)
& ~ c0_1(a111)
& ~ c5_1(a111) ) )
& ( ~ hskp25
| ( ndr1_0
& c1_1(a113)
& c2_1(a113)
& ~ c0_1(a113) ) )
& ( ~ hskp26
| ( ndr1_0
& ~ c1_1(a114)
& ~ c2_1(a114)
& ~ c4_1(a114) ) )
& ( ~ hskp27
| ( ndr1_0
& c5_1(a115)
& ~ c0_1(a115)
& ~ c2_1(a115) ) )
& ( ~ hskp28
| ( ndr1_0
& ~ c3_1(a116)
& ~ c4_1(a116)
& ~ c5_1(a116) ) )
& ( ~ hskp29
| ( ndr1_0
& c2_1(a117)
& ~ c3_1(a117)
& ~ c5_1(a117) ) )
& ( ~ hskp30
| ( ndr1_0
& c5_1(a118)
& ~ c0_1(a118)
& ~ c1_1(a118) ) )
& ( ~ hskp31
| ( ndr1_0
& c0_1(a120)
& c2_1(a120)
& ~ c4_1(a120) ) )
& ( ~ hskp32
| ( ndr1_0
& c3_1(a121)
& c4_1(a121)
& ~ c0_1(a121) ) )
& ( ~ hskp33
| ( ndr1_0
& c4_1(a123)
& c5_1(a123)
& ~ c0_1(a123) ) )
& ( ~ hskp34
| ( ndr1_0
& c0_1(a124)
& c3_1(a124)
& ~ c5_1(a124) ) )
& ( ~ hskp35
| ( ndr1_0
& c4_1(a125)
& ~ c0_1(a125)
& ~ c3_1(a125) ) )
& ( ~ hskp36
| ( ndr1_0
& c0_1(a126)
& c3_1(a126)
& ~ c2_1(a126) ) )
& ( ~ hskp37
| ( ndr1_0
& c2_1(a127)
& ~ c1_1(a127)
& ~ c4_1(a127) ) )
& ( ~ hskp38
| ( ndr1_0
& c0_1(a128)
& c4_1(a128)
& ~ c1_1(a128) ) )
& ( ~ hskp39
| ( ndr1_0
& c1_1(a129)
& c2_1(a129)
& ~ c4_1(a129) ) )
& ( ~ hskp40
| ( ndr1_0
& c1_1(a131)
& c2_1(a131)
& ~ c3_1(a131) ) )
& ( ~ hskp41
| ( ndr1_0
& c1_1(a133)
& ~ c3_1(a133)
& ~ c5_1(a133) ) )
& ( ~ hskp42
| ( ndr1_0
& ~ c0_1(a135)
& ~ c2_1(a135)
& ~ c3_1(a135) ) )
& ( ~ hskp43
| ( ndr1_0
& c3_1(a137)
& ~ c2_1(a137)
& ~ c5_1(a137) ) )
& ( ~ hskp44
| ( ndr1_0
& c4_1(a138)
& ~ c1_1(a138)
& ~ c3_1(a138) ) )
& ( ~ hskp45
| ( ndr1_0
& c4_1(a140)
& ~ c3_1(a140)
& ~ c5_1(a140) ) )
& ( ~ hskp46
| ( ndr1_0
& ~ c0_1(a141)
& ~ c1_1(a141)
& ~ c2_1(a141) ) )
& ( ~ hskp47
| ( ndr1_0
& c0_1(a142)
& c5_1(a142)
& ~ c2_1(a142) ) )
& ( ~ hskp48
| ( ndr1_0
& c0_1(a143)
& ~ c2_1(a143)
& ~ c3_1(a143) ) )
& ( ~ hskp49
| ( ndr1_0
& c1_1(a145)
& c3_1(a145)
& ~ c5_1(a145) ) )
& ( ~ hskp50
| ( ndr1_0
& c2_1(a146)
& c5_1(a146)
& ~ c1_1(a146) ) )
& ( ~ hskp51
| ( ndr1_0
& c4_1(a147)
& c5_1(a147)
& ~ c3_1(a147) ) )
& ( ~ hskp52
| ( ndr1_0
& c1_1(a148)
& c4_1(a148)
& ~ c5_1(a148) ) )
& ( ~ hskp53
| ( ndr1_0
& c2_1(a149)
& ~ c3_1(a149)
& ~ c4_1(a149) ) )
& ( ~ hskp54
| ( ndr1_0
& c4_1(a150)
& ~ c0_1(a150)
& ~ c1_1(a150) ) )
& ( ~ hskp55
| ( ndr1_0
& c2_1(a152)
& ~ c4_1(a152)
& ~ c5_1(a152) ) )
& ( ~ hskp56
| ( ndr1_0
& c3_1(a154)
& ~ c0_1(a154)
& ~ c2_1(a154) ) )
& ( ~ hskp57
| ( ndr1_0
& c5_1(a156)
& ~ c0_1(a156)
& ~ c3_1(a156) ) )
& ( ~ hskp58
| ( ndr1_0
& c1_1(a78)
& c2_1(a78)
& c3_1(a78) ) )
& ( ~ hskp59
| ( ndr1_0
& c0_1(a79)
& c3_1(a79)
& c4_1(a79) ) )
& ( ~ hskp60
| ( ndr1_0
& c1_1(a101)
& c3_1(a101)
& c5_1(a101) ) )
& ( ~ hskp61
| ( ndr1_0
& c0_1(a102)
& c2_1(a102)
& c3_1(a102) ) )
& ( ~ hskp62
| ( ndr1_0
& c0_1(a119)
& c1_1(a119)
& c2_1(a119) ) )
& ( ~ hskp63
| ( ndr1_0
& c0_1(a136)
& c1_1(a136)
& c4_1(a136) ) )
& ( ~ hskp64
| ( ndr1_0
& c3_1(a153)
& c4_1(a153)
& c5_1(a153) ) )
& ( ! [U] :
( ndr1_0
=> ( c0_1(U)
| c1_1(U)
| c4_1(U) ) )
| ! [V] :
( ndr1_0
=> ( c1_1(V)
| ~ c0_1(V)
| ~ c4_1(V) ) )
| hskp58 )
& ( ! [W] :
( ndr1_0
=> ( c0_1(W)
| c1_1(W)
| c4_1(W) ) )
| ! [X] :
( ndr1_0
=> ( c2_1(X)
| c3_1(X)
| ~ c4_1(X) ) )
| hskp59 )
& ( ! [Y] :
( ndr1_0
=> ( c0_1(Y)
| c1_1(Y)
| c4_1(Y) ) )
| hskp0
| hskp1 )
& ( ! [Z] :
( ndr1_0
=> ( c0_1(Z)
| c1_1(Z)
| ~ c3_1(Z) ) )
| ! [X1] :
( ndr1_0
=> ( c0_1(X1)
| c5_1(X1)
| ~ c1_1(X1) ) )
| ! [X2] :
( ndr1_0
=> ( c0_1(X2)
| ~ c1_1(X2)
| ~ c2_1(X2) ) ) )
& ( ! [X3] :
( ndr1_0
=> ( c0_1(X3)
| c1_1(X3)
| ~ c3_1(X3) ) )
| ! [X4] :
( ndr1_0
=> ( c1_1(X4)
| c5_1(X4)
| ~ c4_1(X4) ) )
| hskp2 )
& ( ! [X5] :
( ndr1_0
=> ( c0_1(X5)
| c1_1(X5)
| ~ c3_1(X5) ) )
| ! [X6] :
( ndr1_0
=> ( c5_1(X6)
| ~ c2_1(X6)
| ~ c4_1(X6) ) )
| hskp59 )
& ( ! [X7] :
( ndr1_0
=> ( c0_1(X7)
| c2_1(X7)
| ~ c3_1(X7) ) )
| ! [X8] :
( ndr1_0
=> ( c0_1(X8)
| c4_1(X8)
| ~ c1_1(X8) ) )
| hskp3 )
& ( ! [X9] :
( ndr1_0
=> ( c0_1(X9)
| c2_1(X9)
| ~ c4_1(X9) ) )
| ! [X10] :
( ndr1_0
=> ( c1_1(X10)
| c4_1(X10)
| c5_1(X10) ) )
| ! [X11] :
( ndr1_0
=> ( c4_1(X11)
| c5_1(X11)
| ~ c1_1(X11) ) ) )
& ( ! [X12] :
( ndr1_0
=> ( c0_1(X12)
| c3_1(X12)
| c4_1(X12) ) )
| ! [X13] :
( ndr1_0
=> ( c3_1(X13)
| c5_1(X13)
| ~ c0_1(X13) ) )
| ! [X14] :
( ndr1_0
=> ( c4_1(X14)
| c5_1(X14)
| ~ c3_1(X14) ) ) )
& ( ! [X15] :
( ndr1_0
=> ( c0_1(X15)
| c3_1(X15)
| ~ c2_1(X15) ) )
| ! [X16] :
( ndr1_0
=> ( c2_1(X16)
| ~ c3_1(X16)
| ~ c5_1(X16) ) )
| hskp4 )
& ( ! [X17] :
( ndr1_0
=> ( c0_1(X17)
| c3_1(X17)
| ~ c4_1(X17) ) )
| ! [X18] :
( ndr1_0
=> ( c2_1(X18)
| c5_1(X18)
| ~ c1_1(X18) ) )
| hskp5 )
& ( ! [X19] :
( ndr1_0
=> ( c0_1(X19)
| c3_1(X19)
| ~ c4_1(X19) ) )
| ! [X20] :
( ndr1_0
=> ( c3_1(X20)
| ~ c0_1(X20)
| ~ c5_1(X20) ) )
| hskp6 )
& ( ! [X21] :
( ndr1_0
=> ( c0_1(X21)
| c3_1(X21)
| ~ c5_1(X21) ) )
| ! [X22] :
( ndr1_0
=> ( c2_1(X22)
| c3_1(X22)
| ~ c0_1(X22) ) )
| ! [X23] :
( ndr1_0
=> ( c3_1(X23)
| c5_1(X23)
| ~ c1_1(X23) ) ) )
& ( ! [X24] :
( ndr1_0
=> ( c0_1(X24)
| c4_1(X24)
| ~ c1_1(X24) ) )
| ! [X25] :
( ndr1_0
=> ( c2_1(X25)
| c5_1(X25)
| ~ c4_1(X25) ) )
| hskp1 )
& ( ! [X26] :
( ndr1_0
=> ( c0_1(X26)
| c4_1(X26)
| ~ c3_1(X26) ) )
| ! [X27] :
( ndr1_0
=> ( c0_1(X27)
| ~ c3_1(X27)
| ~ c4_1(X27) ) )
| ! [X28] :
( ndr1_0
=> ( c2_1(X28)
| c4_1(X28)
| ~ c1_1(X28) ) ) )
& ( ! [X29] :
( ndr1_0
=> ( c0_1(X29)
| c4_1(X29)
| ~ c3_1(X29) ) )
| ! [X30] :
( ndr1_0
=> ( c1_1(X30)
| c3_1(X30)
| ~ c0_1(X30) ) )
| hskp7 )
& ( ! [X31] :
( ndr1_0
=> ( c0_1(X31)
| ~ c1_1(X31)
| ~ c2_1(X31) ) )
| ! [X32] :
( ndr1_0
=> ( c0_1(X32)
| ~ c2_1(X32)
| ~ c3_1(X32) ) )
| ! [X33] :
( ndr1_0
=> ( c1_1(X33)
| c2_1(X33)
| ~ c5_1(X33) ) ) )
& ( ! [X34] :
( ndr1_0
=> ( c0_1(X34)
| ~ c2_1(X34)
| ~ c3_1(X34) ) )
| ! [X35] :
( ndr1_0
=> ( c2_1(X35)
| c3_1(X35)
| c5_1(X35) ) )
| ! [X36] :
( ndr1_0
=> ( c3_1(X36)
| ~ c1_1(X36)
| ~ c4_1(X36) ) ) )
& ( ! [X37] :
( ndr1_0
=> ( c0_1(X37)
| ~ c2_1(X37)
| ~ c4_1(X37) ) )
| hskp8
| hskp9 )
& ( ! [X38] :
( ndr1_0
=> ( c0_1(X38)
| ~ c3_1(X38)
| ~ c5_1(X38) ) )
| ! [X39] :
( ndr1_0
=> ( c1_1(X39)
| c2_1(X39)
| ~ c3_1(X39) ) )
| hskp10 )
& ( ! [X40] :
( ndr1_0
=> ( c0_1(X40)
| ~ c3_1(X40)
| ~ c5_1(X40) ) )
| ! [X41] :
( ndr1_0
=> ( c3_1(X41)
| c4_1(X41)
| c5_1(X41) ) )
| hskp11 )
& ( ! [X42] :
( ndr1_0
=> ( c1_1(X42)
| c2_1(X42)
| c4_1(X42) ) )
| ! [X43] :
( ndr1_0
=> ( c1_1(X43)
| c3_1(X43)
| ~ c4_1(X43) ) )
| hskp12 )
& ( ! [X44] :
( ndr1_0
=> ( c1_1(X44)
| c2_1(X44)
| ~ c4_1(X44) ) )
| hskp13
| hskp14 )
& ( ! [X45] :
( ndr1_0
=> ( c1_1(X45)
| c3_1(X45)
| c5_1(X45) ) )
| ! [X46] :
( ndr1_0
=> ( ~ c1_1(X46)
| ~ c3_1(X46)
| ~ c4_1(X46) ) )
| hskp15 )
& ( ! [X47] :
( ndr1_0
=> ( c1_1(X47)
| c3_1(X47)
| ~ c0_1(X47) ) )
| ! [X48] :
( ndr1_0
=> ( c2_1(X48)
| ~ c0_1(X48)
| ~ c4_1(X48) ) )
| hskp16 )
& ( ! [X49] :
( ndr1_0
=> ( c1_1(X49)
| c3_1(X49)
| ~ c4_1(X49) ) )
| hskp17
| hskp18 )
& ( ! [X50] :
( ndr1_0
=> ( c1_1(X50)
| c3_1(X50)
| ~ c5_1(X50) ) )
| ! [X51] :
( ndr1_0
=> ( c5_1(X51)
| ~ c1_1(X51)
| ~ c2_1(X51) ) )
| hskp60 )
& ( ! [X52] :
( ndr1_0
=> ( c1_1(X52)
| c4_1(X52)
| c5_1(X52) ) )
| ! [X53] :
( ndr1_0
=> ( ~ c1_1(X53)
| ~ c2_1(X53)
| ~ c5_1(X53) ) )
| hskp61 )
& ( ! [X54] :
( ndr1_0
=> ( c1_1(X54)
| c4_1(X54)
| ~ c2_1(X54) ) )
| ! [X55] :
( ndr1_0
=> ( c3_1(X55)
| ~ c0_1(X55)
| ~ c1_1(X55) ) )
| ! [X56] :
( ndr1_0
=> ( c5_1(X56)
| ~ c2_1(X56)
| ~ c3_1(X56) ) ) )
& ( ! [X57] :
( ndr1_0
=> ( c1_1(X57)
| ~ c0_1(X57)
| ~ c2_1(X57) ) )
| ! [X58] :
( ndr1_0
=> ( c2_1(X58)
| c4_1(X58)
| c5_1(X58) ) )
| ! [X59] :
( ndr1_0
=> ( c3_1(X59)
| c5_1(X59)
| ~ c2_1(X59) ) ) )
& ( ! [X60] :
( ndr1_0
=> ( c1_1(X60)
| ~ c2_1(X60)
| ~ c4_1(X60) ) )
| ! [X61] :
( ndr1_0
=> ( c4_1(X61)
| c5_1(X61)
| ~ c2_1(X61) ) )
| hskp19 )
& ( ! [X62] :
( ndr1_0
=> ( c1_1(X62)
| ~ c3_1(X62)
| ~ c5_1(X62) ) )
| ! [X63] :
( ndr1_0
=> ( c2_1(X63)
| c5_1(X63)
| ~ c1_1(X63) ) )
| ! [X64] :
( ndr1_0
=> ( c5_1(X64)
| ~ c1_1(X64)
| ~ c4_1(X64) ) ) )
& ( ! [X65] :
( ndr1_0
=> ( c2_1(X65)
| c3_1(X65)
| ~ c4_1(X65) ) )
| ! [X66] :
( ndr1_0
=> ( c3_1(X66)
| ~ c4_1(X66)
| ~ c5_1(X66) ) )
| ! [X67] :
( ndr1_0
=> ( c5_1(X67)
| ~ c1_1(X67)
| ~ c3_1(X67) ) ) )
& ( ! [X68] :
( ndr1_0
=> ( c2_1(X68)
| c4_1(X68)
| ~ c0_1(X68) ) )
| ! [X69] :
( ndr1_0
=> ( c2_1(X69)
| c5_1(X69)
| ~ c0_1(X69) ) )
| hskp0 )
& ( ! [X70] :
( ndr1_0
=> ( c2_1(X70)
| c4_1(X70)
| ~ c0_1(X70) ) )
| ! [X71] :
( ndr1_0
=> ( c5_1(X71)
| ~ c2_1(X71)
| ~ c4_1(X71) ) )
| hskp20 )
& ( ! [X72] :
( ndr1_0
=> ( c2_1(X72)
| c4_1(X72)
| ~ c1_1(X72) ) )
| ! [X73] :
( ndr1_0
=> ( c3_1(X73)
| ~ c1_1(X73)
| ~ c4_1(X73) ) )
| ! [X74] :
( ndr1_0
=> ( ~ c2_1(X74)
| ~ c3_1(X74)
| ~ c4_1(X74) ) ) )
& ( ! [X75] :
( ndr1_0
=> ( c2_1(X75)
| c4_1(X75)
| ~ c5_1(X75) ) )
| ! [X76] :
( ndr1_0
=> ( c5_1(X76)
| ~ c1_1(X76)
| ~ c3_1(X76) ) )
| hskp21 )
& ( ! [X77] :
( ndr1_0
=> ( c2_1(X77)
| c4_1(X77)
| ~ c5_1(X77) ) )
| hskp10
| hskp22 )
& ( ! [X78] :
( ndr1_0
=> ( c2_1(X78)
| c5_1(X78)
| ~ c3_1(X78) ) )
| ! [X79] :
( ndr1_0
=> ( c2_1(X79)
| ~ c3_1(X79)
| ~ c4_1(X79) ) )
| hskp23 )
& ( ! [X80] :
( ndr1_0
=> ( c2_1(X80)
| ~ c0_1(X80)
| ~ c1_1(X80) ) )
| ! [X81] :
( ndr1_0
=> ( c5_1(X81)
| ~ c3_1(X81)
| ~ c4_1(X81) ) )
| hskp4 )
& ( ! [X82] :
( ndr1_0
=> ( c2_1(X82)
| ~ c1_1(X82)
| ~ c4_1(X82) ) )
| hskp24
| hskp1 )
& ( ! [X83] :
( ndr1_0
=> ( c2_1(X83)
| ~ c1_1(X83)
| ~ c5_1(X83) ) )
| hskp25
| hskp26 )
& ( ! [X84] :
( ndr1_0
=> ( c3_1(X84)
| c5_1(X84)
| ~ c4_1(X84) ) )
| hskp27
| hskp28 )
& ( ! [X85] :
( ndr1_0
=> ( c4_1(X85)
| c5_1(X85)
| ~ c0_1(X85) ) )
| hskp29
| hskp30 )
& ( ! [X86] :
( ndr1_0
=> ( c4_1(X86)
| c5_1(X86)
| ~ c2_1(X86) ) )
| hskp62 )
& ( ! [X87] :
( ndr1_0
=> ( c4_1(X87)
| ~ c0_1(X87)
| ~ c1_1(X87) ) )
| hskp31
| hskp32 )
& ( ! [X88] :
( ndr1_0
=> ( c5_1(X88)
| ~ c1_1(X88)
| ~ c2_1(X88) ) )
| hskp13
| hskp33 )
& ( ! [X89] :
( ndr1_0
=> ( c5_1(X89)
| ~ c1_1(X89)
| ~ c2_1(X89) ) )
| hskp34
| hskp35 )
& ( ! [X90] :
( ndr1_0
=> ( c5_1(X90)
| ~ c2_1(X90)
| ~ c3_1(X90) ) )
| hskp36
| hskp37 )
& ( ! [X91] :
( ndr1_0
=> ( c5_1(X91)
| ~ c3_1(X91)
| ~ c4_1(X91) ) )
| hskp38
| hskp39 )
& ( ! [X92] :
( ndr1_0
=> ( ~ c1_1(X92)
| ~ c3_1(X92)
| ~ c4_1(X92) ) )
| hskp25
| hskp40 )
& ( ! [X93] :
( ndr1_0
=> ( ~ c1_1(X93)
| ~ c4_1(X93)
| ~ c5_1(X93) ) )
| hskp20
| hskp41 )
& ( ! [X94] :
( ndr1_0
=> ( ~ c3_1(X94)
| ~ c4_1(X94)
| ~ c5_1(X94) ) )
| hskp12
| hskp42 )
& ( hskp63
| hskp43
| hskp44 )
& ( hskp38
| hskp45
| hskp46 )
& ( hskp47
| hskp48
| hskp21 )
& ( hskp49
| hskp50
| hskp51 )
& ( hskp52
| hskp53
| hskp54 )
& ( hskp41
| hskp55
| hskp64 )
& ( hskp56
| hskp33
| hskp57 ) ) ).
%--------------------------------------------------------------------------