TPTP Problem File: SYN538+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN538+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=5, R=1, L=40, K=3, D=2, P=0, Index=022
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-5-1-40-3-2-022.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v4.1.0, 0.17 v4.0.1, 0.00 v3.2.0, 0.25 v3.1.0, 0.17 v2.7.0, 0.33 v2.6.0, 0.25 v2.5.0, 0.00 v2.4.0, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 340 ( 0 equ)
% Maximal formula atoms : 340 ( 340 avg)
% Number of connectives : 465 ( 126 ~; 147 |; 139 &)
% ( 0 <=>; 53 =>; 0 <=; 0 <~>)
% Maximal formula depth : 45 ( 45 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 17 ( 17 usr; 6 prp; 0-2 aty)
% Number of functors : 41 ( 41 usr; 41 con; 0-0 aty)
% Number of variables : 53 ( 53 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ( ndr1_0
& c2_1(a546)
& ndr1_1(a546)
& c2_2(a546,a547)
& c5_2(a546,a547)
& ~ c4_2(a546,a547) )
| ! [U] :
( ndr1_0
=> ( ( ndr1_1(U)
& ~ c1_2(U,a548)
& c5_2(U,a548)
& c2_2(U,a548) )
| ( ndr1_1(U)
& c5_2(U,a549)
& c2_2(U,a549)
& ~ c4_2(U,a549) )
| ! [V] :
( ndr1_1(U)
=> ( c1_2(U,V)
| ~ c5_2(U,V) ) ) ) )
| ! [W] :
( ndr1_0
=> ( ~ c1_1(W)
| c2_1(W)
| ! [X] :
( ndr1_1(W)
=> ( ~ c2_2(W,X)
| ~ c3_2(W,X) ) ) ) ) )
& ( ~ c4_0
| ~ c2_0 )
& ( c3_0
| ~ c4_0
| ( ndr1_0
& ~ c5_1(a550) ) )
& ( c1_0
| c4_0 )
& ( ! [Y] :
( ndr1_0
=> ( ~ c3_1(Y)
| ~ c4_1(Y) ) )
| ( ndr1_0
& ~ c1_1(a551)
& ! [Z] :
( ndr1_1(a551)
=> ( ~ c4_2(a551,Z)
| c1_2(a551,Z)
| ~ c3_2(a551,Z) ) )
& ! [X1] :
( ndr1_1(a551)
=> ( c5_2(a551,X1)
| ~ c2_2(a551,X1)
| c4_2(a551,X1) ) ) )
| ~ c4_0 )
& ( ! [X2] :
( ndr1_0
=> ( c4_1(X2)
| ~ c3_1(X2)
| ! [X3] :
( ndr1_1(X2)
=> ( c4_2(X2,X3)
| c1_2(X2,X3)
| ~ c3_2(X2,X3) ) ) ) )
| ( ndr1_0
& ndr1_1(a552)
& c2_2(a552,a553)
& ~ c3_2(a552,a553)
& c1_2(a552,a553)
& ndr1_1(a552)
& ~ c2_2(a552,a554)
& ~ c4_2(a552,a554) ) )
& ( c5_0
| c1_0
| ! [X4] :
( ndr1_0
=> ( ( ndr1_1(X4)
& ~ c5_2(X4,a555)
& ~ c1_2(X4,a555)
& ~ c4_2(X4,a555) )
| c5_1(X4)
| ~ c3_1(X4) ) ) )
& ( ~ c3_0
| c1_0
| ! [X5] :
( ndr1_0
=> ( c4_1(X5)
| c1_1(X5)
| ~ c3_1(X5) ) ) )
& ( ! [X6] :
( ndr1_0
=> ( ~ c5_1(X6)
| ! [X7] :
( ndr1_1(X6)
=> ( c1_2(X6,X7)
| ~ c3_2(X6,X7)
| c2_2(X6,X7) ) )
| c3_1(X6) ) )
| ~ c2_0
| c1_0 )
& ( c5_0
| ( ndr1_0
& ~ c4_1(a556)
& c5_1(a556) )
| ! [X8] :
( ndr1_0
=> ( ( ndr1_1(X8)
& c1_2(X8,a557)
& ~ c3_2(X8,a557) )
| c2_1(X8)
| ( ndr1_1(X8)
& ~ c5_2(X8,a558)
& ~ c3_2(X8,a558)
& c2_2(X8,a558) ) ) ) )
& ( c2_0
| ! [X9] :
( ndr1_0
=> ( ( ndr1_1(X9)
& ~ c1_2(X9,a559)
& c3_2(X9,a559)
& c4_2(X9,a559) )
| ! [X10] :
( ndr1_1(X9)
=> ( ~ c2_2(X9,X10)
| c1_2(X9,X10) ) )
| ! [X11] :
( ndr1_1(X9)
=> ( c2_2(X9,X11)
| c5_2(X9,X11)
| ~ c3_2(X9,X11) ) ) ) )
| ! [X12] :
( ndr1_0
=> ( ~ c4_1(X12)
| ( ndr1_1(X12)
& c5_2(X12,a560)
& c3_2(X12,a560) )
| ~ c3_1(X12) ) ) )
& ( ( ndr1_0
& ~ c1_1(a561)
& ! [X13] :
( ndr1_1(a561)
=> ( ~ c5_2(a561,X13)
| ~ c4_2(a561,X13)
| ~ c2_2(a561,X13) ) ) )
| ! [X14] :
( ndr1_0
=> ( ( ndr1_1(X14)
& c2_2(X14,a562)
& c5_2(X14,a562)
& ~ c4_2(X14,a562) )
| ( ndr1_1(X14)
& c1_2(X14,a563)
& ~ c2_2(X14,a563)
& c4_2(X14,a563) )
| c3_1(X14) ) )
| ( ndr1_0
& ~ c3_1(a564)
& ~ c1_1(a564) ) )
& ( c5_0
| c4_0
| ~ c3_0 )
& ( c5_0
| ! [X15] :
( ndr1_0
=> ( ~ c1_1(X15)
| ! [X16] :
( ndr1_1(X15)
=> ( ~ c5_2(X15,X16)
| c1_2(X15,X16)
| ~ c4_2(X15,X16) ) )
| c2_1(X15) ) ) )
& ( ! [X17] :
( ndr1_0
=> ( c5_1(X17)
| ~ c4_1(X17)
| ! [X18] :
( ndr1_1(X17)
=> ( c3_2(X17,X18)
| ~ c2_2(X17,X18)
| c1_2(X17,X18) ) ) ) )
| ~ c3_0 )
& ( ~ c5_0
| ~ c3_0
| ( ndr1_0
& ~ c1_1(a565)
& ! [X19] :
( ndr1_1(a565)
=> ( ~ c1_2(a565,X19)
| ~ c2_2(a565,X19) ) ) ) )
& ( ! [X20] :
( ndr1_0
=> ( ! [X21] :
( ndr1_1(X20)
=> ( ~ c4_2(X20,X21)
| ~ c2_2(X20,X21)
| c3_2(X20,X21) ) )
| ( ndr1_1(X20)
& ~ c2_2(X20,a566)
& ~ c3_2(X20,a566)
& c4_2(X20,a566) )
| ~ c1_1(X20) ) )
| ! [X22] :
( ndr1_0
=> ( ~ c5_1(X22)
| ~ c2_1(X22) ) ) )
& ( ( ndr1_0
& c1_1(a567)
& ndr1_1(a567)
& ~ c1_2(a567,a568)
& c4_2(a567,a568)
& c2_1(a567) )
| ( ndr1_0
& ~ c1_1(a569)
& ~ c2_1(a569)
& ! [X23] :
( ndr1_1(a569)
=> ( ~ c2_2(a569,X23)
| c3_2(a569,X23) ) ) )
| c5_0 )
& ( ! [X24] :
( ndr1_0
=> ( ( ndr1_1(X24)
& ~ c2_2(X24,a570)
& ~ c3_2(X24,a570)
& ~ c4_2(X24,a570) )
| ~ c5_1(X24)
| ! [X25] :
( ndr1_1(X24)
=> ( ~ c5_2(X24,X25)
| c2_2(X24,X25) ) ) ) )
| c5_0
| ~ c2_0 )
& ( ( ndr1_0
& ndr1_1(a571)
& ~ c3_2(a571,a572)
& ~ c1_2(a571,a572)
& c5_2(a571,a572)
& ndr1_1(a571)
& c3_2(a571,a573)
& ~ c4_2(a571,a573)
& c1_2(a571,a573)
& c1_1(a571) )
| ! [X26] :
( ndr1_0
=> ( ~ c2_1(X26)
| c1_1(X26)
| ~ c4_1(X26) ) )
| ~ c2_0 )
& ( ( ndr1_0
& ! [X27] :
( ndr1_1(a574)
=> ( c4_2(a574,X27)
| ~ c1_2(a574,X27)
| c3_2(a574,X27) ) )
& c5_1(a574)
& ~ c1_1(a574) )
| c5_0
| ! [X28] :
( ndr1_0
=> ( ~ c5_1(X28)
| ! [X29] :
( ndr1_1(X28)
=> ( c2_2(X28,X29)
| ~ c1_2(X28,X29)
| ~ c3_2(X28,X29) ) )
| c2_1(X28) ) ) )
& ( ! [X30] :
( ndr1_0
=> ( ! [X31] :
( ndr1_1(X30)
=> ( c3_2(X30,X31)
| ~ c4_2(X30,X31)
| c1_2(X30,X31) ) )
| ! [X32] :
( ndr1_1(X30)
=> ( c2_2(X30,X32)
| c4_2(X30,X32) ) )
| c5_1(X30) ) )
| c4_0
| c1_0 )
& ( ! [X33] :
( ndr1_0
=> ( ( ndr1_1(X33)
& ~ c3_2(X33,a575)
& c2_2(X33,a575)
& c1_2(X33,a575) )
| ~ c4_1(X33)
| c2_1(X33) ) )
| ! [X34] :
( ndr1_0
=> ( ~ c3_1(X34)
| c4_1(X34) ) ) )
& ( c3_0
| ~ c2_0
| c1_0 )
& ( c2_0
| ! [X35] :
( ndr1_0
=> ~ c2_1(X35) ) )
& ( ! [X36] :
( ndr1_0
=> ( ( ndr1_1(X36)
& ~ c5_2(X36,a576)
& c2_2(X36,a576) )
| ~ c2_1(X36)
| c3_1(X36) ) )
| ( ndr1_0
& c1_1(a577)
& c4_1(a577) )
| c1_0 )
& ( ~ c4_0
| ( ndr1_0
& ~ c2_1(a578)
& ! [X37] :
( ndr1_1(a578)
=> ( c4_2(a578,X37)
| ~ c5_2(a578,X37) ) )
& c5_1(a578) )
| c3_0 )
& ( ! [X38] :
( ndr1_0
=> ( ! [X39] :
( ndr1_1(X38)
=> ( ~ c1_2(X38,X39)
| c5_2(X38,X39) ) )
| c5_1(X38)
| ~ c4_1(X38) ) )
| ! [X40] :
( ndr1_0
=> ~ c3_1(X40) )
| ! [X41] :
( ndr1_0
=> ( ~ c3_1(X41)
| ( ndr1_1(X41)
& c3_2(X41,a579)
& ~ c2_2(X41,a579) )
| ( ndr1_1(X41)
& ~ c1_2(X41,a580)
& c2_2(X41,a580) ) ) ) )
& ( ! [X42] :
( ndr1_0
=> ( ~ c2_1(X42)
| ~ c4_1(X42)
| c3_1(X42) ) )
| c3_0 )
& ( ! [X43] :
( ndr1_0
=> ( c4_1(X43)
| c5_1(X43)
| ! [X44] :
( ndr1_1(X43)
=> ( ~ c1_2(X43,X44)
| c4_2(X43,X44)
| ~ c5_2(X43,X44) ) ) ) )
| ~ c2_0
| ( ndr1_0
& c3_1(a581)
& ~ c2_1(a581)
& ndr1_1(a581)
& ~ c2_2(a581,a582)
& c5_2(a581,a582)
& c1_2(a581,a582) ) )
& ( c4_0
| ( ndr1_0
& ~ c4_1(a583)
& c3_1(a583)
& c5_1(a583) )
| ( ndr1_0
& ~ c2_1(a584)
& ~ c5_1(a584) ) )
& ( ~ c4_0
| ( ndr1_0
& c2_1(a585)
& ~ c1_1(a585)
& c5_1(a585) )
| ~ c1_0 )
& ( ~ c1_0
| c3_0 )
& ( ! [X45] :
( ndr1_0
=> ( c4_1(X45)
| c1_1(X45)
| c5_1(X45) ) )
| ~ c3_0
| ! [X46] :
( ndr1_0
=> ( ( ndr1_1(X46)
& ~ c4_2(X46,a586)
& ~ c1_2(X46,a586)
& c5_2(X46,a586) )
| ~ c5_1(X46)
| ! [X47] :
( ndr1_1(X46)
=> ( c3_2(X46,X47)
| ~ c5_2(X46,X47) ) ) ) ) ) ) ).
%--------------------------------------------------------------------------