TPTP Problem File: SYN531+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN531+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=036
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-5-1-25-3-2-036.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v4.1.0, 0.17 v4.0.1, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 178 ( 0 equ)
% Maximal formula atoms : 178 ( 178 avg)
% Number of connectives : 232 ( 55 ~; 70 |; 82 &)
% ( 0 <=>; 25 =>; 0 <=; 0 <~>)
% Maximal formula depth : 30 ( 30 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 17 ( 17 usr; 6 prp; 0-2 aty)
% Number of functors : 24 ( 24 usr; 24 con; 0-0 aty)
% Number of variables : 25 ( 25 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ! [U] :
( ndr1_0
=> ( ! [V] :
( ndr1_1(U)
=> ( c3_2(U,V)
| c2_2(U,V) ) )
| c3_1(U) ) )
| ~ c1_0
| ~ c5_0 )
& ( ! [W] :
( ndr1_0
=> ( ( ndr1_1(W)
& c5_2(W,a387)
& c2_2(W,a387)
& c3_2(W,a387) )
| ( ndr1_1(W)
& c3_2(W,a388)
& ~ c1_2(W,a388)
& c2_2(W,a388) )
| c2_1(W) ) )
| ! [X] :
( ndr1_0
=> ( ~ c1_1(X)
| ~ c5_1(X)
| ( ndr1_1(X)
& c1_2(X,a389)
& ~ c3_2(X,a389) ) ) ) )
& ( ! [Y] :
( ndr1_0
=> ( c3_1(Y)
| ! [Z] :
( ndr1_1(Y)
=> ( c1_2(Y,Z)
| ~ c3_2(Y,Z) ) )
| c5_1(Y) ) )
| ( ndr1_0
& ~ c1_1(a390)
& ! [X1] :
( ndr1_1(a390)
=> ( c1_2(a390,X1)
| c5_2(a390,X1) ) ) )
| ( ndr1_0
& ! [X2] :
( ndr1_1(a391)
=> ( c4_2(a391,X2)
| ~ c1_2(a391,X2)
| ~ c3_2(a391,X2) ) )
& ~ c3_1(a391)
& ! [X3] :
( ndr1_1(a391)
=> ( c4_2(a391,X3)
| c1_2(a391,X3)
| ~ c5_2(a391,X3) ) ) ) )
& ( ~ c4_0
| ! [X4] :
( ndr1_0
=> ( c4_1(X4)
| c2_1(X4)
| c5_1(X4) ) ) )
& ( ( ndr1_0
& c5_1(a392)
& c3_1(a392)
& c1_1(a392) )
| c5_0
| ( ndr1_0
& ndr1_1(a393)
& ~ c2_2(a393,a394)
& ~ c3_2(a393,a394)
& c5_2(a393,a394)
& ndr1_1(a393)
& ~ c1_2(a393,a395)
& c2_2(a393,a395)
& c3_1(a393) ) )
& ( ~ c1_0
| ( ndr1_0
& ~ c3_1(a396)
& c4_1(a396)
& ndr1_1(a396)
& ~ c5_2(a396,a397)
& ~ c4_2(a396,a397)
& c3_2(a396,a397) )
| ~ c2_0 )
& ( c3_0
| c4_0
| ! [X5] :
( ndr1_0
=> ( ~ c3_1(X5)
| ( ndr1_1(X5)
& c3_2(X5,a398) )
| ~ c1_1(X5) ) ) )
& ( c4_0
| ~ c5_0
| ~ c2_0 )
& ( ~ c2_0
| ~ c3_0 )
& ( ! [X6] :
( ndr1_0
=> ( c4_1(X6)
| c5_1(X6)
| ~ c3_1(X6) ) )
| ~ c2_0 )
& ( ( ndr1_0
& ~ c2_1(a399)
& ! [X7] :
( ndr1_1(a399)
=> ( ~ c2_2(a399,X7)
| ~ c1_2(a399,X7)
| ~ c5_2(a399,X7) ) ) )
| c3_0
| ~ c5_0 )
& ( c3_0
| ! [X8] :
( ndr1_0
=> ( ! [X9] :
( ndr1_1(X8)
=> ( c3_2(X8,X9)
| c2_2(X8,X9)
| c4_2(X8,X9) ) )
| c1_1(X8) ) )
| c2_0 )
& ( ~ c2_0
| ( ndr1_0
& c2_1(a400)
& ~ c1_1(a400)
& ! [X10] :
( ndr1_1(a400)
=> ~ c3_2(a400,X10) ) )
| ( ndr1_0
& ndr1_1(a401)
& c2_2(a401,a402)
& ~ c1_2(a401,a402)
& c4_1(a401) ) )
& ( ! [X11] :
( ndr1_0
=> ( c2_1(X11)
| c1_1(X11)
| ~ c3_1(X11) ) )
| ~ c5_0
| ( ndr1_0
& c1_1(a403)
& ndr1_1(a403)
& c3_2(a403,a404)
& ~ c4_2(a403,a404)
& c2_1(a403) ) )
& ( c5_0
| c4_0 )
& ( ~ c5_0
| c1_0
| c3_0 )
& ( ! [X12] :
( ndr1_0
=> ( ~ c1_1(X12)
| ! [X13] :
( ndr1_1(X12)
=> ( c2_2(X12,X13)
| ~ c3_2(X12,X13)
| c5_2(X12,X13) ) )
| ( ndr1_1(X12)
& ~ c5_2(X12,a405)
& ~ c2_2(X12,a405)
& ~ c1_2(X12,a405) ) ) )
| ! [X14] :
( ndr1_0
=> ( ! [X15] :
( ndr1_1(X14)
=> ( c1_2(X14,X15)
| c3_2(X14,X15) ) )
| ( ndr1_1(X14)
& c4_2(X14,a406)
& c2_2(X14,a406)
& c3_2(X14,a406) ) ) ) )
& ( ( ndr1_0
& ndr1_1(a407)
& ~ c3_2(a407,a408)
& c1_2(a407,a408)
& ~ c5_2(a407,a408)
& ~ c2_1(a407)
& ndr1_1(a407)
& ~ c3_2(a407,a409)
& c1_2(a407,a409)
& c2_2(a407,a409) )
| ! [X16] :
( ndr1_0
=> ( c5_1(X16)
| ! [X17] :
( ndr1_1(X16)
=> ( c2_2(X16,X17)
| c1_2(X16,X17) ) )
| ! [X18] :
( ndr1_1(X16)
=> ( ~ c4_2(X16,X18)
| c2_2(X16,X18) ) ) ) ) )
& ( c2_0
| ~ c5_0 )
& ( c1_0
| ! [X19] :
( ndr1_0
=> ( ( ndr1_1(X19)
& c1_2(X19,a410)
& ~ c4_2(X19,a410)
& c2_2(X19,a410) )
| c4_1(X19) ) )
| c4_0 ) ) ).
%--------------------------------------------------------------------------