TPTP Problem File: SYN527+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN527+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=025
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-5-1-25-3-2-025.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v4.1.0, 0.17 v4.0.1, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 164 ( 0 equ)
% Maximal formula atoms : 164 ( 164 avg)
% Number of connectives : 218 ( 55 ~; 62 |; 85 &)
% ( 0 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 30 ( 30 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 17 ( 17 usr; 6 prp; 0-2 aty)
% Number of functors : 26 ( 26 usr; 26 con; 0-0 aty)
% Number of variables : 16 ( 16 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( c2_0
| ( ndr1_0
& ! [U] :
( ndr1_1(a251)
=> ( c2_2(a251,U)
| c4_2(a251,U) ) )
& c5_1(a251) )
| ( ndr1_0
& ndr1_1(a252)
& c4_2(a252,a253)
& c1_2(a252,a253)
& c5_2(a252,a253) ) )
& ( c3_0
| ! [V] :
( ndr1_0
=> ( ~ c2_1(V)
| ( ndr1_1(V)
& c5_2(V,a254)
& ~ c2_2(V,a254) )
| ( ndr1_1(V)
& ~ c1_2(V,a255)
& ~ c5_2(V,a255)
& c4_2(V,a255) ) ) )
| c2_0 )
& ( ~ c3_0
| ~ c5_0
| ~ c2_0 )
& ( c4_0
| ( ndr1_0
& ~ c4_1(a256)
& ! [W] :
( ndr1_1(a256)
=> ( c1_2(a256,W)
| c4_2(a256,W)
| c3_2(a256,W) ) )
& ndr1_1(a256)
& c1_2(a256,a257)
& ~ c4_2(a256,a257)
& ~ c3_2(a256,a257) )
| c2_0 )
& ( c1_0
| ! [X] :
( ndr1_0
=> ( ~ c1_1(X)
| ~ c4_1(X)
| ! [Y] :
( ndr1_1(X)
=> ( ~ c4_2(X,Y)
| ~ c5_2(X,Y)
| ~ c2_2(X,Y) ) ) ) )
| c4_0 )
& ( ~ c1_0
| c2_0 )
& ( ( ndr1_0
& ndr1_1(a258)
& c3_2(a258,a259)
& c5_2(a258,a259)
& ! [Z] :
( ndr1_1(a258)
=> ( c1_2(a258,Z)
| c3_2(a258,Z) ) )
& ~ c2_1(a258) )
| ~ c2_0 )
& ( ( ndr1_0
& c1_1(a260)
& ~ c2_1(a260) )
| c1_0
| ~ c2_0 )
& ( ~ c2_0
| ~ c1_0
| ~ c4_0 )
& ( ! [X1] :
( ndr1_0
=> ( ( ndr1_1(X1)
& c4_2(X1,a261)
& c1_2(X1,a261)
& c3_2(X1,a261) )
| c1_1(X1) ) )
| c2_0 )
& ( ( ndr1_0
& c4_1(a262)
& ndr1_1(a262)
& c2_2(a262,a263)
& ~ c5_2(a262,a263)
& ~ c3_2(a262,a263)
& ~ c5_1(a262) )
| ~ c1_0 )
& ( ( ndr1_0
& ~ c2_1(a264)
& ~ c5_1(a264)
& c4_1(a264) )
| c5_0
| c3_0 )
& ( ~ c3_0
| ~ c4_0
| ( ndr1_0
& ndr1_1(a265)
& c1_2(a265,a266)
& c5_2(a265,a266)
& ! [X2] :
( ndr1_1(a265)
=> ( c4_2(a265,X2)
| ~ c2_2(a265,X2)
| c3_2(a265,X2) ) ) ) )
& ( ~ c5_0
| ~ c1_0
| ( ndr1_0
& c5_1(a267)
& ndr1_1(a267)
& c1_2(a267,a268)
& ~ c4_2(a267,a268)
& c3_2(a267,a268) ) )
& ( c3_0
| ! [X3] :
( ndr1_0
=> ( c2_1(X3)
| ~ c4_1(X3) ) ) )
& ( ! [X4] :
( ndr1_0
=> ( ~ c1_1(X4)
| ( ndr1_1(X4)
& c5_2(X4,a269)
& ~ c3_2(X4,a269) )
| c4_1(X4) ) )
| ( ndr1_0
& c4_1(a270)
& ~ c5_1(a270)
& ndr1_1(a270)
& c3_2(a270,a271)
& c5_2(a270,a271)
& ~ c2_2(a270,a271) )
| ! [X5] :
( ndr1_0
=> ( ~ c5_1(X5)
| c2_1(X5)
| ~ c3_1(X5) ) ) )
& ( ~ c3_0
| ! [X6] :
( ndr1_0
=> ( ! [X7] :
( ndr1_1(X6)
=> ( c1_2(X6,X7)
| ~ c3_2(X6,X7)
| ~ c2_2(X6,X7) ) )
| ( ndr1_1(X6)
& ~ c1_2(X6,a272)
& ~ c2_2(X6,a272) )
| ( ndr1_1(X6)
& c2_2(X6,a273)
& ~ c5_2(X6,a273) ) ) ) )
& ( c4_0
| c5_0
| c2_0 )
& ( ( ndr1_0
& ~ c5_1(a274)
& c1_1(a274)
& c4_1(a274) )
| ~ c1_0
| ~ c5_0 )
& ( c4_0
| ( ndr1_0
& ! [X8] :
( ndr1_1(a275)
=> ( c1_2(a275,X8)
| c2_2(a275,X8) ) )
& ndr1_1(a275)
& c1_2(a275,a276)
& c4_2(a275,a276)
& ~ c5_2(a275,a276) )
| ! [X9] :
( ndr1_0
=> ( ~ c2_1(X9)
| c4_1(X9)
| c3_1(X9) ) ) )
& ( c1_0
| ! [X10] :
( ndr1_0
=> ( c3_1(X10)
| c4_1(X10) ) )
| ~ c3_0 ) ) ).
%--------------------------------------------------------------------------