TPTP Problem File: SYN526+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN526+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=5, R=1, L=25, K=3, D=2, P=0, Index=011
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-5-1-25-3-2-011.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v4.1.0, 0.17 v4.0.1, 0.00 v2.4.0, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 231 ( 0 equ)
% Maximal formula atoms : 231 ( 231 avg)
% Number of connectives : 321 ( 91 ~; 91 |; 106 &)
% ( 0 <=>; 33 =>; 0 <=; 0 <~>)
% Maximal formula depth : 30 ( 30 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 17 ( 17 usr; 6 prp; 0-2 aty)
% Number of functors : 33 ( 33 usr; 33 con; 0-0 aty)
% Number of variables : 33 ( 33 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ~ c2_0
& ( ! [U] :
( ndr1_0
=> ( c3_1(U)
| ! [V] :
( ndr1_1(U)
=> ( ~ c3_2(U,V)
| ~ c1_2(U,V) ) )
| ~ c1_1(U) ) )
| ! [W] :
( ndr1_0
=> ( c1_1(W)
| ( ndr1_1(W)
& ~ c3_2(W,a218)
& c5_2(W,a218)
& c1_2(W,a218) ) ) )
| ~ c5_0 )
& ( c5_0
| c4_0
| ! [X] :
( ndr1_0
=> ( ( ndr1_1(X)
& ~ c1_2(X,a219)
& ~ c2_2(X,a219)
& ~ c3_2(X,a219) )
| ~ c2_1(X)
| c4_1(X) ) ) )
& ( ~ c4_0
| ! [Y] :
( ndr1_0
=> ( ( ndr1_1(Y)
& ~ c3_2(Y,a220)
& c1_2(Y,a220)
& c4_2(Y,a220) )
| ! [Z] :
( ndr1_1(Y)
=> ( c4_2(Y,Z)
| c3_2(Y,Z)
| ~ c2_2(Y,Z) ) )
| ~ c2_1(Y) ) )
| ! [X1] :
( ndr1_0
=> ( c2_1(X1)
| ! [X2] :
( ndr1_1(X1)
=> ( c2_2(X1,X2)
| ~ c5_2(X1,X2)
| ~ c1_2(X1,X2) ) )
| c5_1(X1) ) ) )
& ( c5_0
| ( ndr1_0
& ndr1_1(a221)
& c1_2(a221,a222)
& ~ c5_2(a221,a222)
& ! [X3] :
( ndr1_1(a221)
=> ( ~ c2_2(a221,X3)
| ~ c1_2(a221,X3)
| c5_2(a221,X3) ) ) )
| c4_0 )
& ( c5_0
| ~ c3_0 )
& ( ( ndr1_0
& c2_1(a223)
& ndr1_1(a223)
& c4_2(a223,a224)
& ~ c5_2(a223,a224)
& c2_2(a223,a224)
& c5_1(a223) )
| ~ c5_0
| ( ndr1_0
& ndr1_1(a225)
& c1_2(a225,a226)
& ~ c3_2(a225,a226)
& c4_1(a225) ) )
& ( ~ c3_0
| ! [X4] :
( ndr1_0
=> ( c5_1(X4)
| ( ndr1_1(X4)
& c4_2(X4,a227)
& ~ c5_2(X4,a227)
& c1_2(X4,a227) )
| ( ndr1_1(X4)
& ~ c2_2(X4,a228)
& c1_2(X4,a228) ) ) )
| ( ndr1_0
& ! [X5] :
( ndr1_1(a229)
=> ( ~ c5_2(a229,X5)
| ~ c4_2(a229,X5)
| ~ c3_2(a229,X5) ) )
& ~ c4_1(a229)
& ! [X6] :
( ndr1_1(a229)
=> ( c5_2(a229,X6)
| c4_2(a229,X6)
| ~ c1_2(a229,X6) ) ) ) )
& ( ~ c1_0
| ~ c5_0
| ~ c3_0 )
& ( ( ndr1_0
& c2_1(a230)
& c3_1(a230)
& ndr1_1(a230)
& ~ c1_2(a230,a231)
& ~ c5_2(a230,a231) )
| ~ c4_0
| ! [X7] :
( ndr1_0
=> ( ~ c2_1(X7)
| c5_1(X7) ) ) )
& ( ~ c5_0
| c3_0
| ( ndr1_0
& ~ c4_1(a232)
& ~ c3_1(a232) ) )
& ( ! [X8] :
( ndr1_0
=> ( ( ndr1_1(X8)
& c3_2(X8,a233)
& c2_2(X8,a233)
& ~ c5_2(X8,a233) )
| c4_1(X8)
| ~ c2_1(X8) ) )
| ! [X9] :
( ndr1_0
=> ( ( ndr1_1(X9)
& ~ c5_2(X9,a234)
& c4_2(X9,a234) )
| ~ c1_1(X9)
| ! [X10] :
( ndr1_1(X9)
=> ( ~ c2_2(X9,X10)
| ~ c4_2(X9,X10)
| ~ c5_2(X9,X10) ) ) ) )
| ! [X11] :
( ndr1_0
=> ( ( ndr1_1(X11)
& c4_2(X11,a235)
& ~ c5_2(X11,a235)
& c1_2(X11,a235) )
| c5_1(X11) ) ) )
& ( ( ndr1_0
& ~ c4_1(a236)
& ! [X12] :
( ndr1_1(a236)
=> ( c3_2(a236,X12)
| c5_2(a236,X12)
| ~ c4_2(a236,X12) ) )
& c3_1(a236) )
| ~ c3_0
| ( ndr1_0
& ! [X13] :
( ndr1_1(a237)
=> ( c4_2(a237,X13)
| ~ c5_2(a237,X13) ) )
& ! [X14] :
( ndr1_1(a237)
=> ( ~ c3_2(a237,X14)
| ~ c2_2(a237,X14)
| c5_2(a237,X14) ) )
& c2_1(a237) ) )
& ( ! [X15] :
( ndr1_0
=> ( ( ndr1_1(X15)
& c3_2(X15,a238)
& c1_2(X15,a238)
& ~ c2_2(X15,a238) )
| ~ c2_1(X15) ) )
| ! [X16] :
( ndr1_0
=> ( ~ c4_1(X16)
| ( ndr1_1(X16)
& ~ c5_2(X16,a239)
& ~ c4_2(X16,a239)
& c2_2(X16,a239) )
| ~ c3_1(X16) ) )
| ( ndr1_0
& ~ c2_1(a240)
& c3_1(a240)
& ndr1_1(a240)
& c3_2(a240,a241)
& ~ c5_2(a240,a241)
& ~ c1_2(a240,a241) ) )
& ( ( ndr1_0
& ~ c3_1(a242)
& ~ c2_1(a242)
& ~ c4_1(a242) )
| ! [X17] :
( ndr1_0
=> ( ( ndr1_1(X17)
& c1_2(X17,a243)
& ~ c5_2(X17,a243) )
| c4_1(X17) ) )
| ~ c4_0 )
& ( ~ c5_0
| ! [X18] :
( ndr1_0
=> ( ~ c5_1(X18)
| ( ndr1_1(X18)
& ~ c3_2(X18,a244)
& c5_2(X18,a244)
& c2_2(X18,a244) )
| ! [X19] :
( ndr1_1(X18)
=> ( c3_2(X18,X19)
| ~ c5_2(X18,X19)
| c4_2(X18,X19) ) ) ) ) )
& ( ( ndr1_0
& ! [X20] :
( ndr1_1(a245)
=> ( c5_2(a245,X20)
| ~ c3_2(a245,X20) ) )
& ! [X21] :
( ndr1_1(a245)
=> ( c1_2(a245,X21)
| ~ c4_2(a245,X21)
| c5_2(a245,X21) ) )
& ~ c5_1(a245) )
| ! [X22] :
( ndr1_0
=> ( c1_1(X22)
| ( ndr1_1(X22)
& ~ c1_2(X22,a246)
& ~ c2_2(X22,a246)
& ~ c3_2(X22,a246) )
| c3_1(X22) ) )
| ( ndr1_0
& ! [X23] :
( ndr1_1(a247)
=> ( ~ c3_2(a247,X23)
| c1_2(a247,X23) ) )
& ~ c3_1(a247) ) )
& ( ( ndr1_0
& ndr1_1(a248)
& c4_2(a248,a249)
& c2_2(a248,a249)
& ~ c1_2(a248,a249)
& c3_1(a248) )
| c3_0 )
& ( ! [X24] :
( ndr1_0
=> ( c4_1(X24)
| ( ndr1_1(X24)
& c4_2(X24,a250)
& ~ c5_2(X24,a250) )
| ~ c3_1(X24) ) )
| ! [X25] :
( ndr1_0
=> ( ! [X26] :
( ndr1_1(X25)
=> ( ~ c4_2(X25,X26)
| ~ c1_2(X25,X26)
| ~ c5_2(X25,X26) ) )
| ~ c2_1(X25)
| c5_1(X25) ) ) )
& ( ~ c1_0
| ~ c4_0
| ! [X27] :
( ndr1_0
=> ( c2_1(X27)
| c3_1(X27)
| c4_1(X27) ) ) ) ) ).
%--------------------------------------------------------------------------