TPTP Problem File: SYN517+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN517+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=5, R=1, L=15, K=3, D=2, P=0, Index=061
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-5-1-15-3-2-061.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v5.5.0, 0.10 v5.4.0, 0.00 v4.1.0, 0.17 v4.0.1, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 132 ( 0 equ)
% Maximal formula atoms : 132 ( 132 avg)
% Number of connectives : 173 ( 42 ~; 49 |; 67 &)
% ( 0 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 23 ( 23 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 17 ( 17 usr; 6 prp; 0-2 aty)
% Number of functors : 20 ( 20 usr; 20 con; 0-0 aty)
% Number of variables : 15 ( 15 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( c1_0
| ( ndr1_0
& ndr1_1(a50)
& ~ c1_2(a50,a51)
& ~ c4_2(a50,a51)
& c3_2(a50,a51)
& ! [U] :
( ndr1_1(a50)
=> ( ~ c2_2(a50,U)
| c4_2(a50,U)
| c3_2(a50,U) ) )
& c3_1(a50) )
| ! [V] :
( ndr1_0
=> ( c5_1(V)
| c3_1(V)
| ! [W] :
( ndr1_1(V)
=> ( ~ c3_2(V,W)
| c4_2(V,W) ) ) ) ) )
& ( ! [X] :
( ndr1_0
=> ( ! [Y] :
( ndr1_1(X)
=> ( c3_2(X,Y)
| ~ c4_2(X,Y)
| ~ c2_2(X,Y) ) )
| c4_1(X)
| ( ndr1_1(X)
& ~ c3_2(X,a52)
& ~ c2_2(X,a52)
& c1_2(X,a52) ) ) )
| ~ c5_0
| ~ c1_0 )
& ( c4_0
| c5_0 )
& ( ~ c2_0
| ~ c3_0
| c5_0 )
& ( c1_0
| ( ndr1_0
& c5_1(a53)
& ndr1_1(a53)
& ~ c1_2(a53,a54)
& c3_2(a53,a54)
& c2_2(a53,a54)
& c1_1(a53) )
| c2_0 )
& ( ~ c2_0
| ( ndr1_0
& ndr1_1(a55)
& c4_2(a55,a56)
& ~ c3_2(a55,a56)
& c1_2(a55,a56)
& c5_1(a55)
& ! [Z] :
( ndr1_1(a55)
=> ( c3_2(a55,Z)
| c5_2(a55,Z)
| c1_2(a55,Z) ) ) )
| ~ c4_0 )
& ( c3_0
| ( ndr1_0
& ndr1_1(a57)
& c4_2(a57,a58)
& ~ c1_2(a57,a58)
& c2_2(a57,a58)
& ! [X1] :
( ndr1_1(a57)
=> ( ~ c3_2(a57,X1)
| c5_2(a57,X1)
| c2_2(a57,X1) ) )
& ~ c5_1(a57) )
| ( ndr1_0
& ~ c4_1(a59)
& c2_1(a59)
& c5_1(a59) ) )
& ( ~ c5_0
| ~ c3_0
| ( ndr1_0
& ndr1_1(a60)
& ~ c4_2(a60,a61)
& ~ c1_2(a60,a61)
& ~ c5_2(a60,a61)
& c5_1(a60)
& ! [X2] :
( ndr1_1(a60)
=> ( c5_2(a60,X2)
| c4_2(a60,X2) ) ) ) )
& ( ( ndr1_0
& c1_1(a62)
& ! [X3] :
( ndr1_1(a62)
=> ( c2_2(a62,X3)
| ~ c5_2(a62,X3)
| c1_2(a62,X3) ) )
& ndr1_1(a62)
& c3_2(a62,a63)
& ~ c5_2(a62,a63)
& ~ c2_2(a62,a63) )
| ( ndr1_0
& ~ c5_1(a64)
& c2_1(a64) )
| ~ c5_0 )
& ( ( ndr1_0
& ! [X4] :
( ndr1_1(a65)
=> ( ~ c1_2(a65,X4)
| ~ c3_2(a65,X4) ) )
& ndr1_1(a65)
& ~ c3_2(a65,a66)
& c5_2(a65,a66)
& c4_2(a65,a66) )
| c2_0 )
& ( c3_0
| ( ndr1_0
& ! [X5] :
( ndr1_1(a67)
=> ( ~ c2_2(a67,X5)
| c1_2(a67,X5)
| ~ c3_2(a67,X5) ) )
& ~ c1_1(a67) )
| ( ndr1_0
& ! [X6] :
( ndr1_1(a68)
=> ( ~ c4_2(a68,X6)
| ~ c5_2(a68,X6)
| c3_2(a68,X6) ) )
& ~ c3_1(a68) ) )
& ( ! [X7] :
( ndr1_0
=> ( ( ndr1_1(X7)
& c5_2(X7,a69)
& ~ c1_2(X7,a69)
& c4_2(X7,a69) )
| c4_1(X7)
| c3_1(X7) ) )
| ! [X8] :
( ndr1_0
=> ( ~ c5_1(X8)
| c3_1(X8)
| ! [X9] :
( ndr1_1(X8)
=> ( c2_2(X8,X9)
| c4_2(X8,X9)
| c3_2(X8,X9) ) ) ) )
| c4_0 ) ) ).
%--------------------------------------------------------------------------