TPTP Problem File: SYN516-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN516-1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=5, R=1, L=15, K=3, D=2, P=0, Index=047
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [WGR96] Weidenbach et al. (1996), SPASS and FLOTTER
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-5-1-15-3-2-047.cnf [Wei97]
% Status : Satisfiable
% Rating : 0.00 v2.1.0
% Syntax : Number of clauses : 71 ( 0 unt; 41 nHn; 64 RR)
% Number of literals : 259 ( 0 equ; 135 neg)
% Maximal clause size : 8 ( 3 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 23 ( 23 usr; 12 prp; 0-2 aty)
% Number of functors : 23 ( 23 usr; 23 con; 0-0 aty)
% Number of variables : 30 ( 0 sgn)
% SPC : CNF_SAT_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
% : Translated from FOF using FLOTTER [WGR96].
%--------------------------------------------------------------------------
cnf(clause1,negated_conjecture,
( ndr1_0
| ssSkC5 ) ).
cnf(clause2,negated_conjecture,
( ndr1_0
| ssSkC4 ) ).
cnf(clause3,negated_conjecture,
( ndr1_0
| ssSkC3 ) ).
cnf(clause4,negated_conjecture,
( ndr1_0
| ssSkC1 ) ).
cnf(clause5,negated_conjecture,
( ~ ssSkC5
| ndr1_0
| c1_0 ) ).
cnf(clause6,negated_conjecture,
( ~ c2_0
| ndr1_0 ) ).
cnf(clause7,negated_conjecture,
( ~ ssSkC3
| ndr1_0
| c3_0 ) ).
cnf(clause8,negated_conjecture,
( ~ ssSkC1
| ndr1_0
| c5_0 ) ).
cnf(clause9,negated_conjecture,
( ndr1_1(a39)
| ssSkC3 ) ).
cnf(clause10,negated_conjecture,
( c2_1(a39)
| ssSkC3 ) ).
cnf(clause11,negated_conjecture,
( c3_1(a30)
| ssSkC1 ) ).
cnf(clause12,negated_conjecture,
( ~ ssSkC5
| ndr1_1(a48)
| c1_0 ) ).
cnf(clause13,negated_conjecture,
( ~ ssSkC5
| c4_1(a48)
| c1_0 ) ).
cnf(clause14,negated_conjecture,
( ~ ssSkC4
| ~ c5_0
| ndr1_0 ) ).
cnf(clause15,negated_conjecture,
( ~ ssSkC3
| ndr1_1(a41)
| c3_0 ) ).
cnf(clause16,negated_conjecture,
( ~ ssSkC1
| ndr1_1(a31)
| c5_0 ) ).
cnf(clause17,negated_conjecture,
( ~ ssSkC1
| c1_1(a31)
| c5_0 ) ).
cnf(clause18,negated_conjecture,
( ~ c3_1(a47)
| ssSkC5 ) ).
cnf(clause19,negated_conjecture,
( ~ c5_1(a43)
| ssSkC4 ) ).
cnf(clause20,negated_conjecture,
( ~ c2_1(a43)
| ssSkC4 ) ).
cnf(clause21,negated_conjecture,
( c1_2(a39,a40)
| ssSkC3 ) ).
cnf(clause22,negated_conjecture,
( c2_2(a39,a40)
| ssSkC3 ) ).
cnf(clause23,negated_conjecture,
( ~ c1_1(a30)
| ssSkC1 ) ).
cnf(clause24,negated_conjecture,
( ~ c3_1(a46)
| ~ c2_0 ) ).
cnf(clause25,negated_conjecture,
( ~ ssSkC4
| ~ c5_0
| ndr1_1(a44) ) ).
cnf(clause26,negated_conjecture,
( ~ ssSkC4
| ~ c5_0
| c3_1(a44) ) ).
cnf(clause27,negated_conjecture,
( ~ ssSkC4
| ~ c5_0
| c4_1(a44) ) ).
cnf(clause28,negated_conjecture,
( ~ ssSkC3
| c5_2(a41,a42)
| c3_0 ) ).
cnf(clause29,negated_conjecture,
( ~ ssSkC3
| c4_2(a41,a42)
| c3_0 ) ).
cnf(clause30,negated_conjecture,
( ~ ssSkC3
| ~ c2_1(a41)
| c3_0 ) ).
cnf(clause31,negated_conjecture,
( ~ c4_0
| ~ c1_0
| ndr1_0 ) ).
cnf(clause32,negated_conjecture,
( ~ ssSkC1
| c2_2(a31,a33)
| c5_0 ) ).
cnf(clause33,negated_conjecture,
( ~ ssSkC1
| c3_2(a31,a32)
| c5_0 ) ).
cnf(clause34,negated_conjecture,
( ~ ssSkC1
| c5_2(a31,a32)
| c5_0 ) ).
cnf(clause35,negated_conjecture,
( ~ c4_0
| ~ c2_0
| c5_0 ) ).
cnf(clause36,negated_conjecture,
( ~ ssSkC5
| ~ c1_2(a48,a49)
| c1_0 ) ).
cnf(clause37,negated_conjecture,
( ~ ssSkC5
| ~ c5_2(a48,a49)
| c1_0 ) ).
cnf(clause38,negated_conjecture,
( ~ ssSkC4
| ~ c5_0
| c1_2(a44,a45) ) ).
cnf(clause39,negated_conjecture,
( ~ ssSkC3
| ~ c3_2(a41,a42)
| c3_0 ) ).
cnf(clause40,negated_conjecture,
( ~ c4_0
| ~ c1_0
| ndr1_1(a34) ) ).
cnf(clause41,negated_conjecture,
( ~ ssSkC1
| ~ c4_2(a31,a33)
| c5_0 ) ).
cnf(clause42,negated_conjecture,
( ~ ssSkC1
| ~ c5_2(a31,a33)
| c5_0 ) ).
cnf(clause43,negated_conjecture,
( ~ ssSkC1
| ~ c4_2(a31,a32)
| c5_0 ) ).
cnf(clause44,negated_conjecture,
( ~ ndr1_0
| ndr1_1(U)
| c2_1(U)
| ssSkC0 ) ).
cnf(clause45,negated_conjecture,
( ~ ssSkC4
| ~ c4_2(a44,a45)
| ~ c5_0 ) ).
cnf(clause46,negated_conjecture,
( ~ ssSkC4
| ~ c2_2(a44,a45)
| ~ c5_0 ) ).
cnf(clause47,negated_conjecture,
( ~ c4_0
| ~ c1_0
| c1_2(a34,a35) ) ).
cnf(clause48,negated_conjecture,
( ~ c2_1(a34)
| ~ c4_0
| ~ c1_0 ) ).
cnf(clause49,negated_conjecture,
( ~ c1_1(a34)
| ~ c4_0
| ~ c1_0 ) ).
cnf(clause50,negated_conjecture,
( ~ ssSkC2
| ~ ndr1_0
| ndr1_1(U)
| c5_1(U)
| c4_1(U) ) ).
cnf(clause51,negated_conjecture,
( ~ c5_2(a34,a35)
| ~ c4_0
| ~ c1_0 ) ).
cnf(clause52,negated_conjecture,
( ~ c4_2(a34,a35)
| ~ c4_0
| ~ c1_0 ) ).
cnf(clause53,negated_conjecture,
( ~ ssSkC2
| ~ ndr1_0
| c4_2(U,a37)
| c5_1(U)
| c4_1(U) ) ).
cnf(clause54,negated_conjecture,
( ~ ssSkC2
| ~ ndr1_0
| c3_2(U,a37)
| c5_1(U)
| c4_1(U) ) ).
cnf(clause55,negated_conjecture,
( ~ c5_2(U,a28)
| ~ ndr1_0
| c2_1(U)
| ssSkC0 ) ).
cnf(clause56,negated_conjecture,
( ~ c3_2(U,a28)
| ~ ndr1_0
| c2_1(U)
| ssSkC0 ) ).
cnf(clause57,negated_conjecture,
( ~ c5_1(U)
| ~ ndr1_0
| ~ c3_0
| ndr1_1(U)
| c4_1(U) ) ).
cnf(clause58,negated_conjecture,
( ~ ssSkC2
| ~ c2_2(U,a37)
| ~ ndr1_0
| c5_1(U)
| c4_1(U) ) ).
cnf(clause59,negated_conjecture,
( ~ c5_1(U)
| ~ ndr1_0
| ~ c3_0
| c1_2(U,a38)
| c4_1(U) ) ).
cnf(clause60,negated_conjecture,
( ~ c5_1(U)
| ~ ndr1_0
| ~ c3_0
| c3_2(U,a38)
| c4_1(U) ) ).
cnf(clause61,negated_conjecture,
( ~ c5_2(a39,U)
| ~ ndr1_1(a39)
| c1_2(a39,U)
| ssSkC3 ) ).
cnf(clause62,negated_conjecture,
( ~ c5_2(U,a38)
| ~ c5_1(U)
| ~ ndr1_0
| ~ c3_0
| c4_1(U) ) ).
cnf(clause63,negated_conjecture,
( ~ ndr1_1(U)
| ~ ndr1_0
| c3_2(U,V)
| c2_2(U,V)
| c3_2(U,a36)
| c5_1(U)
| ssSkC2 ) ).
cnf(clause64,negated_conjecture,
( ~ c5_2(U,V)
| ~ ndr1_1(U)
| ~ c4_1(U)
| ~ ndr1_0
| c2_2(U,V)
| c4_2(U,V)
| c1_0 ) ).
cnf(clause65,negated_conjecture,
( ~ ndr1_1(U)
| ~ c5_2(U,a36)
| ~ ndr1_0
| c3_2(U,V)
| c2_2(U,V)
| c5_1(U)
| ssSkC2 ) ).
cnf(clause66,negated_conjecture,
( ~ ndr1_1(U)
| ~ c1_2(U,a36)
| ~ ndr1_0
| c3_2(U,V)
| c2_2(U,V)
| c5_1(U)
| ssSkC2 ) ).
cnf(clause67,negated_conjecture,
( ~ c4_2(U,V)
| ~ ndr1_1(U)
| ~ ndr1_0
| c3_2(U,V)
| c5_2(U,V)
| c4_2(U,a27)
| c4_0
| c5_0 ) ).
cnf(clause68,negated_conjecture,
( ~ c4_2(U,V)
| ~ ndr1_1(U)
| ~ c1_2(U,a27)
| ~ ndr1_0
| c3_2(U,V)
| c5_2(U,V)
| c4_0
| c5_0 ) ).
cnf(clause69,negated_conjecture,
( ~ c4_2(U,V)
| ~ ndr1_1(U)
| ~ c5_2(U,a27)
| ~ ndr1_0
| c3_2(U,V)
| c5_2(U,V)
| c4_0
| c5_0 ) ).
cnf(clause70,negated_conjecture,
( ~ ssSkC0
| ~ c3_2(U,V)
| ~ c5_2(U,V)
| ~ c1_2(U,V)
| ~ ndr1_1(U)
| ~ ndr1_0
| c2_2(U,a29)
| c3_1(U) ) ).
cnf(clause71,negated_conjecture,
( ~ ssSkC0
| ~ c3_2(U,V)
| ~ c5_2(U,V)
| ~ c1_2(U,V)
| ~ ndr1_1(U)
| ~ c1_2(U,a29)
| ~ ndr1_0
| c3_1(U) ) ).
%--------------------------------------------------------------------------