TPTP Problem File: SYN496-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN496-1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=8, K=3, D=1, P=0, Index=078
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [WGR96] Weidenbach et al. (1996), SPASS and FLOTTER
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-8-3-1-078.cnf [Wei97]
% Status : Satisfiable
% Rating : 0.00 v2.2.0, 0.50 v2.1.0
% Syntax : Number of clauses : 52 ( 0 unt; 8 nHn; 48 RR)
% Number of literals : 142 ( 0 equ; 81 neg)
% Maximal clause size : 10 ( 2 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 16 ( 16 usr; 12 prp; 0-1 aty)
% Number of functors : 11 ( 11 usr; 11 con; 0-0 aty)
% Number of variables : 12 ( 0 sgn)
% SPC : CNF_SAT_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
% : Translated from FOF using FLOTTER [WGR96].
%--------------------------------------------------------------------------
cnf(clause1,negated_conjecture,
( ~ hskp10
| ndr1_0 ) ).
cnf(clause2,negated_conjecture,
( ~ hskp9
| ndr1_0 ) ).
cnf(clause3,negated_conjecture,
( ~ hskp8
| ndr1_0 ) ).
cnf(clause4,negated_conjecture,
( ~ hskp7
| ndr1_0 ) ).
cnf(clause5,negated_conjecture,
( ~ hskp6
| ndr1_0 ) ).
cnf(clause6,negated_conjecture,
( ~ hskp5
| ndr1_0 ) ).
cnf(clause7,negated_conjecture,
( ~ hskp4
| ndr1_0 ) ).
cnf(clause8,negated_conjecture,
( ~ hskp3
| ndr1_0 ) ).
cnf(clause9,negated_conjecture,
( ~ hskp2
| ndr1_0 ) ).
cnf(clause10,negated_conjecture,
( ~ hskp1
| ndr1_0 ) ).
cnf(clause11,negated_conjecture,
( ~ hskp0
| ndr1_0 ) ).
cnf(clause12,negated_conjecture,
( hskp6
| hskp0
| hskp7 ) ).
cnf(clause13,negated_conjecture,
( hskp4
| hskp10
| hskp1 ) ).
cnf(clause14,negated_conjecture,
( ~ hskp10
| c1_1(a89) ) ).
cnf(clause15,negated_conjecture,
( ~ hskp9
| c0_1(a86) ) ).
cnf(clause16,negated_conjecture,
( ~ hskp9
| c2_1(a86) ) ).
cnf(clause17,negated_conjecture,
( ~ hskp8
| c3_1(a84) ) ).
cnf(clause18,negated_conjecture,
( ~ hskp8
| c1_1(a84) ) ).
cnf(clause19,negated_conjecture,
( ~ hskp7
| c1_1(a82) ) ).
cnf(clause20,negated_conjecture,
( ~ hskp7
| c2_1(a82) ) ).
cnf(clause21,negated_conjecture,
( ~ hskp6
| c3_1(a80) ) ).
cnf(clause22,negated_conjecture,
( ~ hskp6
| c0_1(a80) ) ).
cnf(clause23,negated_conjecture,
( ~ hskp6
| c1_1(a80) ) ).
cnf(clause24,negated_conjecture,
( ~ hskp5
| c3_1(a79) ) ).
cnf(clause25,negated_conjecture,
( ~ hskp5
| c1_1(a79) ) ).
cnf(clause26,negated_conjecture,
( ~ hskp5
| c2_1(a79) ) ).
cnf(clause27,negated_conjecture,
( ~ hskp3
| c1_1(a87) ) ).
cnf(clause28,negated_conjecture,
( ~ hskp3
| c2_1(a87) ) ).
cnf(clause29,negated_conjecture,
( ~ hskp2
| c1_1(a85) ) ).
cnf(clause30,negated_conjecture,
( ~ hskp1
| c2_1(a83) ) ).
cnf(clause31,negated_conjecture,
( ~ c0_1(a89)
| ~ hskp10 ) ).
cnf(clause32,negated_conjecture,
( ~ c2_1(a89)
| ~ hskp10 ) ).
cnf(clause33,negated_conjecture,
( ~ c3_1(a86)
| ~ hskp9 ) ).
cnf(clause34,negated_conjecture,
( ~ c2_1(a84)
| ~ hskp8 ) ).
cnf(clause35,negated_conjecture,
( ~ c3_1(a82)
| ~ hskp7 ) ).
cnf(clause36,negated_conjecture,
( ~ c2_1(a88)
| ~ hskp4 ) ).
cnf(clause37,negated_conjecture,
( ~ c0_1(a88)
| ~ hskp4 ) ).
cnf(clause38,negated_conjecture,
( ~ c1_1(a88)
| ~ hskp4 ) ).
cnf(clause39,negated_conjecture,
( ~ c3_1(a87)
| ~ hskp3 ) ).
cnf(clause40,negated_conjecture,
( ~ c0_1(a85)
| ~ hskp2 ) ).
cnf(clause41,negated_conjecture,
( ~ c3_1(a85)
| ~ hskp2 ) ).
cnf(clause42,negated_conjecture,
( ~ c3_1(a83)
| ~ hskp1 ) ).
cnf(clause43,negated_conjecture,
( ~ c1_1(a83)
| ~ hskp1 ) ).
cnf(clause44,negated_conjecture,
( ~ c1_1(a81)
| ~ hskp0 ) ).
cnf(clause45,negated_conjecture,
( ~ c3_1(a81)
| ~ hskp0 ) ).
cnf(clause46,negated_conjecture,
( ~ c0_1(a81)
| ~ hskp0 ) ).
cnf(clause47,negated_conjecture,
( ~ c2_1(U)
| ~ ndr1_0
| c0_1(U)
| c3_1(U)
| hskp1
| hskp8 ) ).
cnf(clause48,negated_conjecture,
( ~ ndr1_0
| ~ c2_1(U)
| c2_1(V)
| c0_1(V)
| c3_1(V)
| c3_1(U)
| c1_1(U)
| hskp3 ) ).
cnf(clause49,negated_conjecture,
( ~ ndr1_0
| ~ c0_1(U)
| ~ c2_1(U)
| c2_1(V)
| c1_1(V)
| c3_1(V)
| c3_1(U)
| hskp5 ) ).
cnf(clause50,negated_conjecture,
( ~ c1_1(U)
| ~ c2_1(U)
| ~ ndr1_0
| c0_1(U)
| c1_1(V)
| c2_1(V)
| c0_1(V)
| hskp2 ) ).
cnf(clause51,negated_conjecture,
( ~ c1_1(U)
| ~ c0_1(U)
| ~ ndr1_0
| ~ c0_1(V)
| ~ c1_1(V)
| ~ c2_1(V)
| c3_1(U)
| hskp9 ) ).
cnf(clause52,negated_conjecture,
( ~ c3_1(U)
| ~ c0_1(U)
| ~ ndr1_0
| ~ c1_1(V)
| ~ c2_1(V)
| c1_1(U)
| c3_1(V)
| c2_1(W)
| c1_1(W)
| c3_1(W) ) ).
%--------------------------------------------------------------------------