TPTP Problem File: SYN496+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN496+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=8, K=3, D=1, P=0, Index=078
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-8-3-1-078.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v6.1.0, 0.17 v6.0.0, 0.00 v5.5.0, 0.20 v5.4.0, 0.00 v4.1.0, 0.17 v4.0.1, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 115 ( 0 equ)
% Maximal formula atoms : 115 ( 115 avg)
% Number of connectives : 157 ( 43 ~; 51 |; 51 &)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 26 ( 26 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 16 ( 16 usr; 12 prp; 0-1 aty)
% Number of functors : 11 ( 11 usr; 11 con; 0-0 aty)
% Number of variables : 12 ( 12 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& ~ c1_1(a81)
& ~ c3_1(a81)
& ~ c0_1(a81) ) )
& ( ~ hskp1
| ( ndr1_0
& ~ c3_1(a83)
& c2_1(a83)
& ~ c1_1(a83) ) )
& ( ~ hskp2
| ( ndr1_0
& c1_1(a85)
& ~ c0_1(a85)
& ~ c3_1(a85) ) )
& ( ~ hskp3
| ( ndr1_0
& c1_1(a87)
& c2_1(a87)
& ~ c3_1(a87) ) )
& ( ~ hskp4
| ( ndr1_0
& ~ c2_1(a88)
& ~ c0_1(a88)
& ~ c1_1(a88) ) )
& ( ~ hskp5
| ( ndr1_0
& c3_1(a79)
& c1_1(a79)
& c2_1(a79) ) )
& ( ~ hskp6
| ( ndr1_0
& c3_1(a80)
& c0_1(a80)
& c1_1(a80) ) )
& ( ~ hskp7
| ( ndr1_0
& ~ c3_1(a82)
& c1_1(a82)
& c2_1(a82) ) )
& ( ~ hskp8
| ( ndr1_0
& ~ c2_1(a84)
& c3_1(a84)
& c1_1(a84) ) )
& ( ~ hskp9
| ( ndr1_0
& ~ c3_1(a86)
& c0_1(a86)
& c2_1(a86) ) )
& ( ~ hskp10
| ( ndr1_0
& ~ c0_1(a89)
& ~ c2_1(a89)
& c1_1(a89) ) )
& ( ! [U] :
( ndr1_0
=> ( ~ c0_1(U)
| ~ c2_1(U)
| c3_1(U) ) )
| ! [V] :
( ndr1_0
=> ( c2_1(V)
| c1_1(V)
| c3_1(V) ) )
| hskp5 )
& ( hskp6
| hskp0
| hskp7 )
& ( hskp1
| hskp8
| ! [W] :
( ndr1_0
=> ( c0_1(W)
| c3_1(W)
| ~ c2_1(W) ) ) )
& ( ! [X] :
( ndr1_0
=> ( c2_1(X)
| c1_1(X)
| c3_1(X) ) )
| ! [Y] :
( ndr1_0
=> ( c3_1(Y)
| ~ c1_1(Y)
| ~ c2_1(Y) ) )
| ! [Z] :
( ndr1_0
=> ( ~ c3_1(Z)
| c1_1(Z)
| ~ c0_1(Z) ) ) )
& ( hskp2
| ! [X1] :
( ndr1_0
=> ( c1_1(X1)
| c2_1(X1)
| c0_1(X1) ) )
| ! [X2] :
( ndr1_0
=> ( ~ c1_1(X2)
| ~ c2_1(X2)
| c0_1(X2) ) ) )
& ( ! [X3] :
( ndr1_0
=> ( ~ c0_1(X3)
| ~ c1_1(X3)
| ~ c2_1(X3) ) )
| ! [X4] :
( ndr1_0
=> ( ~ c1_1(X4)
| ~ c0_1(X4)
| c3_1(X4) ) )
| hskp9 )
& ( ! [X5] :
( ndr1_0
=> ( ~ c2_1(X5)
| c3_1(X5)
| c1_1(X5) ) )
| hskp3
| ! [X6] :
( ndr1_0
=> ( c2_1(X6)
| c0_1(X6)
| c3_1(X6) ) ) )
& ( hskp4
| hskp10
| hskp1 ) ) ).
%--------------------------------------------------------------------------