TPTP Problem File: SYN491+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN491+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=8, K=3, D=1, P=0, Index=007
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-8-3-1-007.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v5.5.0, 0.10 v5.4.0, 0.00 v4.1.0, 0.17 v4.0.1, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 114 ( 0 equ)
% Maximal formula atoms : 114 ( 114 avg)
% Number of connectives : 148 ( 35 ~; 55 |; 43 &)
% ( 0 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 25 ( 25 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 14 ( 14 usr; 10 prp; 0-1 aty)
% Number of functors : 9 ( 9 usr; 9 con; 0-0 aty)
% Number of variables : 15 ( 15 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& c2_1(a21)
& c0_1(a21)
& ~ c1_1(a21) ) )
& ( ~ hskp1
| ( ndr1_0
& ~ c2_1(a22)
& c1_1(a22)
& ~ c3_1(a22) ) )
& ( ~ hskp2
| ( ndr1_0
& ~ c1_1(a23)
& ~ c2_1(a23)
& ~ c0_1(a23) ) )
& ( ~ hskp3
| ( ndr1_0
& ~ c3_1(a16)
& ~ c1_1(a16)
& c0_1(a16) ) )
& ( ~ hskp4
| ( ndr1_0
& c2_1(a17)
& c0_1(a17)
& c1_1(a17) ) )
& ( ~ hskp5
| ( ndr1_0
& c1_1(a18)
& ~ c2_1(a18)
& c0_1(a18) ) )
& ( ~ hskp6
| ( ndr1_0
& c1_1(a19)
& c2_1(a19)
& c0_1(a19) ) )
& ( ~ hskp7
| ( ndr1_0
& ~ c0_1(a20)
& c2_1(a20)
& c1_1(a20) ) )
& ( ~ hskp8
| ( ndr1_0
& c1_1(a24)
& c3_1(a24)
& c0_1(a24) ) )
& ( ! [U] :
( ndr1_0
=> ( c1_1(U)
| ~ c0_1(U)
| c3_1(U) ) )
| ! [V] :
( ndr1_0
=> ( ~ c2_1(V)
| c0_1(V)
| ~ c3_1(V) ) )
| ! [W] :
( ndr1_0
=> ( ~ c3_1(W)
| c0_1(W)
| c1_1(W) ) ) )
& ( ! [X] :
( ndr1_0
=> ( ~ c1_1(X)
| c2_1(X)
| ~ c3_1(X) ) )
| hskp3
| ! [Y] :
( ndr1_0
=> ( c0_1(Y)
| c2_1(Y)
| c3_1(Y) ) ) )
& ( ! [Z] :
( ndr1_0
=> ( c1_1(Z)
| c3_1(Z)
| c0_1(Z) ) )
| ! [X1] :
( ndr1_0
=> ( c2_1(X1)
| c1_1(X1)
| c3_1(X1) ) )
| hskp4 )
& ( hskp5
| hskp6
| hskp7 )
& ( ! [X2] :
( ndr1_0
=> ( c1_1(X2)
| c0_1(X2)
| c2_1(X2) ) )
| ! [X3] :
( ndr1_0
=> ( ~ c2_1(X3)
| c1_1(X3)
| ~ c3_1(X3) ) )
| ! [X4] :
( ndr1_0
=> ( c2_1(X4)
| c1_1(X4)
| c0_1(X4) ) ) )
& ( ! [X5] :
( ndr1_0
=> ( c1_1(X5)
| c2_1(X5)
| c0_1(X5) ) )
| ! [X6] :
( ndr1_0
=> ( c1_1(X6)
| c0_1(X6)
| c2_1(X6) ) )
| ! [X7] :
( ndr1_0
=> ( ~ c2_1(X7)
| ~ c3_1(X7)
| ~ c1_1(X7) ) ) )
& ( ! [X8] :
( ndr1_0
=> ( c0_1(X8)
| ~ c1_1(X8)
| ~ c2_1(X8) ) )
| ! [X9] :
( ndr1_0
=> ( c3_1(X9)
| ~ c2_1(X9)
| ~ c0_1(X9) ) )
| hskp0 )
& ( hskp1
| hskp2
| hskp8 ) ) ).
%--------------------------------------------------------------------------