TPTP Problem File: SYN490-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN490-1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=8, K=3, D=1, P=0, Index=003
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [WGR96] Weidenbach et al. (1996), SPASS and FLOTTER
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-8-3-1-003.cnf [Wei97]
% Status : Satisfiable
% Rating : 0.00 v2.2.0, 0.50 v2.1.0
% Syntax : Number of clauses : 64 ( 0 unt; 8 nHn; 62 RR)
% Number of literals : 160 ( 0 equ; 93 neg)
% Maximal clause size : 8 ( 2 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 19 ( 19 usr; 15 prp; 0-1 aty)
% Number of functors : 14 ( 14 usr; 14 con; 0-0 aty)
% Number of variables : 9 ( 0 sgn)
% SPC : CNF_SAT_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
% : Translated from FOF using FLOTTER [WGR96].
%--------------------------------------------------------------------------
cnf(clause1,negated_conjecture,
( ~ hskp13
| ndr1_0 ) ).
cnf(clause2,negated_conjecture,
( ~ hskp12
| ndr1_0 ) ).
cnf(clause3,negated_conjecture,
( ~ hskp11
| ndr1_0 ) ).
cnf(clause4,negated_conjecture,
( ~ hskp10
| ndr1_0 ) ).
cnf(clause5,negated_conjecture,
( ~ hskp9
| ndr1_0 ) ).
cnf(clause6,negated_conjecture,
( ~ hskp8
| ndr1_0 ) ).
cnf(clause7,negated_conjecture,
( ~ hskp7
| ndr1_0 ) ).
cnf(clause8,negated_conjecture,
( ~ hskp6
| ndr1_0 ) ).
cnf(clause9,negated_conjecture,
( ~ hskp5
| ndr1_0 ) ).
cnf(clause10,negated_conjecture,
( ~ hskp4
| ndr1_0 ) ).
cnf(clause11,negated_conjecture,
( ~ hskp3
| ndr1_0 ) ).
cnf(clause12,negated_conjecture,
( ~ hskp2
| ndr1_0 ) ).
cnf(clause13,negated_conjecture,
( ~ hskp1
| ndr1_0 ) ).
cnf(clause14,negated_conjecture,
( ~ hskp0
| ndr1_0 ) ).
cnf(clause15,negated_conjecture,
( hskp7
| hskp0
| hskp8 ) ).
cnf(clause16,negated_conjecture,
( hskp10
| hskp3
| hskp11 ) ).
cnf(clause17,negated_conjecture,
( ~ hskp13
| c3_1(a15) ) ).
cnf(clause18,negated_conjecture,
( ~ hskp13
| c1_1(a15) ) ).
cnf(clause19,negated_conjecture,
( ~ hskp13
| c2_1(a15) ) ).
cnf(clause20,negated_conjecture,
( ~ hskp12
| c3_1(a10) ) ).
cnf(clause21,negated_conjecture,
( ~ hskp11
| c1_1(a9) ) ).
cnf(clause22,negated_conjecture,
( ~ hskp11
| c2_1(a9) ) ).
cnf(clause23,negated_conjecture,
( ~ hskp11
| c3_1(a9) ) ).
cnf(clause24,negated_conjecture,
( ~ hskp10
| c3_1(a7) ) ).
cnf(clause25,negated_conjecture,
( ~ hskp9
| c1_1(a6) ) ).
cnf(clause26,negated_conjecture,
( ~ hskp9
| c3_1(a6) ) ).
cnf(clause27,negated_conjecture,
( ~ hskp9
| c2_1(a6) ) ).
cnf(clause28,negated_conjecture,
( ~ hskp8
| c2_1(a3) ) ).
cnf(clause29,negated_conjecture,
( ~ hskp7
| c3_1(a1) ) ).
cnf(clause30,negated_conjecture,
( ~ hskp7
| c0_1(a1) ) ).
cnf(clause31,negated_conjecture,
( ~ hskp7
| c1_1(a1) ) ).
cnf(clause32,negated_conjecture,
( ~ hskp6
| c1_1(a14) ) ).
cnf(clause33,negated_conjecture,
( ~ hskp4
| c1_1(a11) ) ).
cnf(clause34,negated_conjecture,
( ~ hskp4
| c2_1(a11) ) ).
cnf(clause35,negated_conjecture,
( ~ hskp3
| c1_1(a8) ) ).
cnf(clause36,negated_conjecture,
( ~ hskp3
| c3_1(a8) ) ).
cnf(clause37,negated_conjecture,
( ~ hskp2
| c1_1(a5) ) ).
cnf(clause38,negated_conjecture,
( ~ hskp2
| c0_1(a5) ) ).
cnf(clause39,negated_conjecture,
( ~ hskp1
| c1_1(a4) ) ).
cnf(clause40,negated_conjecture,
( ~ hskp0
| c0_1(a2) ) ).
cnf(clause41,negated_conjecture,
( ~ c1_1(a10)
| ~ hskp12 ) ).
cnf(clause42,negated_conjecture,
( ~ c2_1(a10)
| ~ hskp12 ) ).
cnf(clause43,negated_conjecture,
( ~ c2_1(a7)
| ~ hskp10 ) ).
cnf(clause44,negated_conjecture,
( ~ c1_1(a7)
| ~ hskp10 ) ).
cnf(clause45,negated_conjecture,
( ~ c3_1(a3)
| ~ hskp8 ) ).
cnf(clause46,negated_conjecture,
( ~ c1_1(a3)
| ~ hskp8 ) ).
cnf(clause47,negated_conjecture,
( ~ c0_1(a14)
| ~ hskp6 ) ).
cnf(clause48,negated_conjecture,
( ~ c2_1(a14)
| ~ hskp6 ) ).
cnf(clause49,negated_conjecture,
( ~ c1_1(a12)
| ~ hskp5 ) ).
cnf(clause50,negated_conjecture,
( ~ c0_1(a12)
| ~ hskp5 ) ).
cnf(clause51,negated_conjecture,
( ~ c2_1(a12)
| ~ hskp5 ) ).
cnf(clause52,negated_conjecture,
( ~ c0_1(a11)
| ~ hskp4 ) ).
cnf(clause53,negated_conjecture,
( ~ c0_1(a8)
| ~ hskp3 ) ).
cnf(clause54,negated_conjecture,
( ~ c2_1(a5)
| ~ hskp2 ) ).
cnf(clause55,negated_conjecture,
( ~ c3_1(a4)
| ~ hskp1 ) ).
cnf(clause56,negated_conjecture,
( ~ c2_1(a4)
| ~ hskp1 ) ).
cnf(clause57,negated_conjecture,
( ~ c3_1(a2)
| ~ hskp0 ) ).
cnf(clause58,negated_conjecture,
( ~ c1_1(a2)
| ~ hskp0 ) ).
cnf(clause59,negated_conjecture,
( ~ ndr1_0
| c2_1(U)
| c0_1(U)
| c1_1(U)
| hskp5
| hskp3 ) ).
cnf(clause60,negated_conjecture,
( ~ ndr1_0
| c0_1(U)
| c2_1(U)
| c3_1(U)
| hskp6
| hskp13 ) ).
cnf(clause61,negated_conjecture,
( ~ c3_1(U)
| ~ c2_1(U)
| ~ ndr1_0
| c1_1(U)
| hskp2
| hskp9 ) ).
cnf(clause62,negated_conjecture,
( ~ c2_1(U)
| ~ ndr1_0
| ~ c1_1(V)
| ~ c2_1(V)
| c1_1(U)
| c3_1(U)
| c0_1(V)
| hskp1 ) ).
cnf(clause63,negated_conjecture,
( ~ c3_1(U)
| ~ ndr1_0
| ~ c3_1(V)
| ~ c1_1(V)
| ~ c2_1(V)
| c2_1(U)
| c0_1(U)
| hskp12 ) ).
cnf(clause64,negated_conjecture,
( ~ c0_1(U)
| ~ c3_1(U)
| ~ ndr1_0
| ~ c0_1(V)
| ~ c1_1(V)
| c1_1(U)
| c2_1(V)
| hskp4 ) ).
%--------------------------------------------------------------------------