TPTP Problem File: SYN464+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN464+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=093
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-60-3-1-093.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v5.5.0, 0.40 v5.3.0, 0.50 v5.0.0, 0.33 v4.1.0, 0.67 v4.0.1, 0.33 v3.7.0, 0.00 v3.5.0, 0.25 v3.4.0, 0.33 v3.2.0, 0.25 v3.1.0, 0.50 v2.5.0, 0.67 v2.2.1, 1.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 803 ( 0 equ)
% Maximal formula atoms : 803 ( 803 avg)
% Number of connectives : 1134 ( 332 ~; 372 |; 339 &)
% ( 0 <=>; 91 =>; 0 <=; 0 <~>)
% Maximal formula depth : 138 ( 138 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 75 ( 75 usr; 71 prp; 0-1 aty)
% Number of functors : 70 ( 70 usr; 70 con; 0-0 aty)
% Number of variables : 91 ( 91 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& c2_1(a2428)
& ~ c1_1(a2428)
& ~ c0_1(a2428) ) )
& ( ~ hskp1
| ( ndr1_0
& ~ c1_1(a2430)
& c2_1(a2430)
& ~ c3_1(a2430) ) )
& ( ~ hskp2
| ( ndr1_0
& c2_1(a2435)
& c3_1(a2435)
& ~ c1_1(a2435) ) )
& ( ~ hskp3
| ( ndr1_0
& c1_1(a2438)
& ~ c3_1(a2438)
& ~ c0_1(a2438) ) )
& ( ~ hskp4
| ( ndr1_0
& c0_1(a2440)
& ~ c3_1(a2440)
& ~ c2_1(a2440) ) )
& ( ~ hskp5
| ( ndr1_0
& ~ c2_1(a2441)
& c0_1(a2441)
& ~ c3_1(a2441) ) )
& ( ~ hskp6
| ( ndr1_0
& c0_1(a2442)
& ~ c1_1(a2442)
& ~ c2_1(a2442) ) )
& ( ~ hskp7
| ( ndr1_0
& ~ c2_1(a2443)
& ~ c0_1(a2443)
& ~ c3_1(a2443) ) )
& ( ~ hskp8
| ( ndr1_0
& c3_1(a2445)
& ~ c0_1(a2445)
& ~ c1_1(a2445) ) )
& ( ~ hskp9
| ( ndr1_0
& ~ c0_1(a2446)
& ~ c3_1(a2446)
& ~ c1_1(a2446) ) )
& ( ~ hskp10
| ( ndr1_0
& c3_1(a2448)
& c1_1(a2448)
& ~ c2_1(a2448) ) )
& ( ~ hskp11
| ( ndr1_0
& ~ c2_1(a2453)
& ~ c1_1(a2453)
& ~ c0_1(a2453) ) )
& ( ~ hskp12
| ( ndr1_0
& ~ c0_1(a2454)
& ~ c1_1(a2454)
& ~ c3_1(a2454) ) )
& ( ~ hskp13
| ( ndr1_0
& c3_1(a2458)
& c1_1(a2458)
& ~ c0_1(a2458) ) )
& ( ~ hskp14
| ( ndr1_0
& c2_1(a2462)
& c3_1(a2462)
& ~ c0_1(a2462) ) )
& ( ~ hskp15
| ( ndr1_0
& c1_1(a2464)
& ~ c0_1(a2464)
& ~ c2_1(a2464) ) )
& ( ~ hskp16
| ( ndr1_0
& ~ c0_1(a2466)
& ~ c2_1(a2466)
& ~ c3_1(a2466) ) )
& ( ~ hskp17
| ( ndr1_0
& ~ c1_1(a2469)
& ~ c0_1(a2469)
& ~ c2_1(a2469) ) )
& ( ~ hskp18
| ( ndr1_0
& c3_1(a2472)
& c2_1(a2472)
& ~ c0_1(a2472) ) )
& ( ~ hskp19
| ( ndr1_0
& ~ c3_1(a2473)
& c2_1(a2473)
& ~ c1_1(a2473) ) )
& ( ~ hskp20
| ( ndr1_0
& ~ c3_1(a2478)
& ~ c0_1(a2478)
& ~ c2_1(a2478) ) )
& ( ~ hskp21
| ( ndr1_0
& ~ c0_1(a2482)
& ~ c2_1(a2482)
& ~ c1_1(a2482) ) )
& ( ~ hskp22
| ( ndr1_0
& ~ c2_1(a2483)
& c3_1(a2483)
& ~ c1_1(a2483) ) )
& ( ~ hskp23
| ( ndr1_0
& ~ c0_1(a2485)
& c2_1(a2485)
& ~ c1_1(a2485) ) )
& ( ~ hskp24
| ( ndr1_0
& c2_1(a2486)
& ~ c0_1(a2486)
& ~ c1_1(a2486) ) )
& ( ~ hskp25
| ( ndr1_0
& ~ c3_1(a2489)
& c0_1(a2489)
& ~ c2_1(a2489) ) )
& ( ~ hskp26
| ( ndr1_0
& ~ c0_1(a2492)
& c2_1(a2492)
& ~ c3_1(a2492) ) )
& ( ~ hskp27
| ( ndr1_0
& ~ c3_1(a2495)
& ~ c2_1(a2495)
& ~ c0_1(a2495) ) )
& ( ~ hskp28
| ( ndr1_0
& ~ c1_1(a2497)
& c3_1(a2497)
& ~ c2_1(a2497) ) )
& ( ~ hskp29
| ( ndr1_0
& c0_1(a2501)
& c2_1(a2501)
& ~ c1_1(a2501) ) )
& ( ~ hskp30
| ( ndr1_0
& ~ c0_1(a2506)
& ~ c3_1(a2506)
& ~ c2_1(a2506) ) )
& ( ~ hskp31
| ( ndr1_0
& c1_1(a2510)
& ~ c3_1(a2510)
& ~ c2_1(a2510) ) )
& ( ~ hskp32
| ( ndr1_0
& ~ c3_1(a2511)
& c1_1(a2511)
& ~ c0_1(a2511) ) )
& ( ~ hskp33
| ( ndr1_0
& c3_1(a2513)
& c0_1(a2513)
& ~ c2_1(a2513) ) )
& ( ~ hskp34
| ( ndr1_0
& ~ c1_1(a2514)
& ~ c3_1(a2514)
& ~ c2_1(a2514) ) )
& ( ~ hskp35
| ( ndr1_0
& c0_1(a2515)
& ~ c2_1(a2515)
& ~ c1_1(a2515) ) )
& ( ~ hskp36
| ( ndr1_0
& ~ c3_1(a2429)
& ~ c0_1(a2429)
& c1_1(a2429) ) )
& ( ~ hskp37
| ( ndr1_0
& ~ c0_1(a2431)
& ~ c1_1(a2431)
& c2_1(a2431) ) )
& ( ~ hskp38
| ( ndr1_0
& c3_1(a2432)
& ~ c1_1(a2432)
& c2_1(a2432) ) )
& ( ~ hskp39
| ( ndr1_0
& c2_1(a2433)
& ~ c1_1(a2433)
& c0_1(a2433) ) )
& ( ~ hskp40
| ( ndr1_0
& c0_1(a2434)
& c2_1(a2434)
& c1_1(a2434) ) )
& ( ~ hskp41
| ( ndr1_0
& c2_1(a2436)
& c0_1(a2436)
& c1_1(a2436) ) )
& ( ~ hskp42
| ( ndr1_0
& ~ c2_1(a2437)
& c0_1(a2437)
& c1_1(a2437) ) )
& ( ~ hskp43
| ( ndr1_0
& c2_1(a2439)
& c3_1(a2439)
& c1_1(a2439) ) )
& ( ~ hskp44
| ( ndr1_0
& ~ c2_1(a2444)
& c1_1(a2444)
& c0_1(a2444) ) )
& ( ~ hskp45
| ( ndr1_0
& ~ c0_1(a2447)
& ~ c2_1(a2447)
& c1_1(a2447) ) )
& ( ~ hskp46
| ( ndr1_0
& c3_1(a2451)
& c0_1(a2451)
& c1_1(a2451) ) )
& ( ~ hskp47
| ( ndr1_0
& ~ c2_1(a2452)
& ~ c1_1(a2452)
& c0_1(a2452) ) )
& ( ~ hskp48
| ( ndr1_0
& c3_1(a2455)
& c2_1(a2455)
& c0_1(a2455) ) )
& ( ~ hskp49
| ( ndr1_0
& ~ c1_1(a2456)
& ~ c2_1(a2456)
& c3_1(a2456) ) )
& ( ~ hskp50
| ( ndr1_0
& ~ c1_1(a2457)
& c3_1(a2457)
& c2_1(a2457) ) )
& ( ~ hskp51
| ( ndr1_0
& ~ c0_1(a2459)
& c3_1(a2459)
& c1_1(a2459) ) )
& ( ~ hskp52
| ( ndr1_0
& c0_1(a2460)
& ~ c3_1(a2460)
& c2_1(a2460) ) )
& ( ~ hskp53
| ( ndr1_0
& c1_1(a2461)
& ~ c0_1(a2461)
& c3_1(a2461) ) )
& ( ~ hskp54
| ( ndr1_0
& ~ c3_1(a2463)
& ~ c2_1(a2463)
& c1_1(a2463) ) )
& ( ~ hskp55
| ( ndr1_0
& ~ c1_1(a2468)
& c0_1(a2468)
& c3_1(a2468) ) )
& ( ~ hskp56
| ( ndr1_0
& ~ c3_1(a2471)
& c0_1(a2471)
& c2_1(a2471) ) )
& ( ~ hskp57
| ( ndr1_0
& c3_1(a2475)
& c2_1(a2475)
& c1_1(a2475) ) )
& ( ~ hskp58
| ( ndr1_0
& ~ c0_1(a2476)
& ~ c2_1(a2476)
& c3_1(a2476) ) )
& ( ~ hskp59
| ( ndr1_0
& c0_1(a2479)
& ~ c1_1(a2479)
& c2_1(a2479) ) )
& ( ~ hskp60
| ( ndr1_0
& ~ c1_1(a2487)
& ~ c3_1(a2487)
& c0_1(a2487) ) )
& ( ~ hskp61
| ( ndr1_0
& ~ c2_1(a2491)
& ~ c3_1(a2491)
& c1_1(a2491) ) )
& ( ~ hskp62
| ( ndr1_0
& c3_1(a2493)
& c0_1(a2493)
& c2_1(a2493) ) )
& ( ~ hskp63
| ( ndr1_0
& ~ c0_1(a2494)
& c2_1(a2494)
& c1_1(a2494) ) )
& ( ~ hskp64
| ( ndr1_0
& c1_1(a2498)
& ~ c3_1(a2498)
& c2_1(a2498) ) )
& ( ~ hskp65
| ( ndr1_0
& ~ c1_1(a2499)
& ~ c2_1(a2499)
& c0_1(a2499) ) )
& ( ~ hskp66
| ( ndr1_0
& ~ c2_1(a2502)
& ~ c0_1(a2502)
& c3_1(a2502) ) )
& ( ~ hskp67
| ( ndr1_0
& c0_1(a2503)
& c2_1(a2503)
& c3_1(a2503) ) )
& ( ~ hskp68
| ( ndr1_0
& c0_1(a2505)
& ~ c3_1(a2505)
& c1_1(a2505) ) )
& ( ~ hskp69
| ( ndr1_0
& ~ c3_1(a2509)
& ~ c1_1(a2509)
& c2_1(a2509) ) )
& ( ! [U] :
( ndr1_0
=> ( c3_1(U)
| ~ c2_1(U)
| c1_1(U) ) )
| hskp0
| hskp36 )
& ( hskp1
| ! [V] :
( ndr1_0
=> ( ~ c2_1(V)
| ~ c0_1(V)
| c3_1(V) ) )
| ! [W] :
( ndr1_0
=> ( c0_1(W)
| ~ c3_1(W)
| ~ c1_1(W) ) ) )
& ( ! [X] :
( ndr1_0
=> ( ~ c2_1(X)
| c3_1(X)
| c1_1(X) ) )
| hskp37
| hskp38 )
& ( hskp39
| ! [Y] :
( ndr1_0
=> ( c0_1(Y)
| ~ c2_1(Y)
| ~ c1_1(Y) ) )
| ! [Z] :
( ndr1_0
=> ( ~ c2_1(Z)
| c3_1(Z)
| ~ c1_1(Z) ) ) )
& ( hskp40
| hskp2
| ! [X1] :
( ndr1_0
=> ( ~ c3_1(X1)
| ~ c0_1(X1)
| ~ c1_1(X1) ) ) )
& ( ! [X2] :
( ndr1_0
=> ( ~ c0_1(X2)
| ~ c2_1(X2)
| ~ c3_1(X2) ) )
| hskp41
| ! [X3] :
( ndr1_0
=> ( c0_1(X3)
| ~ c1_1(X3)
| ~ c3_1(X3) ) ) )
& ( hskp42
| hskp3
| ! [X4] :
( ndr1_0
=> ( ~ c3_1(X4)
| ~ c0_1(X4)
| ~ c1_1(X4) ) ) )
& ( ! [X5] :
( ndr1_0
=> ( c3_1(X5)
| ~ c1_1(X5)
| c0_1(X5) ) )
| hskp43
| hskp4 )
& ( ! [X6] :
( ndr1_0
=> ( ~ c2_1(X6)
| ~ c0_1(X6)
| ~ c3_1(X6) ) )
| ! [X7] :
( ndr1_0
=> ( ~ c3_1(X7)
| ~ c1_1(X7)
| ~ c2_1(X7) ) )
| hskp5 )
& ( hskp6
| ! [X8] :
( ndr1_0
=> ( c2_1(X8)
| c1_1(X8)
| c3_1(X8) ) )
| ! [X9] :
( ndr1_0
=> ( ~ c2_1(X9)
| ~ c0_1(X9)
| ~ c1_1(X9) ) ) )
& ( hskp7
| hskp44
| hskp8 )
& ( ! [X10] :
( ndr1_0
=> ( c3_1(X10)
| c0_1(X10)
| c2_1(X10) ) )
| hskp9
| hskp45 )
& ( hskp10
| hskp0
| hskp41 )
& ( ! [X11] :
( ndr1_0
=> ( ~ c1_1(X11)
| ~ c0_1(X11)
| ~ c3_1(X11) ) )
| hskp46
| ! [X12] :
( ndr1_0
=> ( c1_1(X12)
| c0_1(X12)
| c2_1(X12) ) ) )
& ( hskp47
| ! [X13] :
( ndr1_0
=> ( c3_1(X13)
| ~ c0_1(X13)
| c2_1(X13) ) )
| ! [X14] :
( ndr1_0
=> ( ~ c1_1(X14)
| ~ c3_1(X14)
| ~ c2_1(X14) ) ) )
& ( hskp11
| ! [X15] :
( ndr1_0
=> ( ~ c0_1(X15)
| c3_1(X15)
| ~ c1_1(X15) ) )
| hskp12 )
& ( ! [X16] :
( ndr1_0
=> ( c0_1(X16)
| ~ c2_1(X16)
| ~ c1_1(X16) ) )
| ! [X17] :
( ndr1_0
=> ( ~ c3_1(X17)
| ~ c0_1(X17)
| c2_1(X17) ) )
| ! [X18] :
( ndr1_0
=> ( c0_1(X18)
| ~ c3_1(X18)
| c1_1(X18) ) ) )
& ( hskp48
| hskp49
| hskp50 )
& ( ! [X19] :
( ndr1_0
=> ( ~ c0_1(X19)
| ~ c3_1(X19)
| c1_1(X19) ) )
| hskp13
| ! [X20] :
( ndr1_0
=> ( ~ c2_1(X20)
| ~ c0_1(X20)
| ~ c3_1(X20) ) ) )
& ( ! [X21] :
( ndr1_0
=> ( ~ c1_1(X21)
| c0_1(X21)
| c3_1(X21) ) )
| ! [X22] :
( ndr1_0
=> ( c3_1(X22)
| c1_1(X22)
| c0_1(X22) ) )
| ! [X23] :
( ndr1_0
=> ( c0_1(X23)
| c3_1(X23)
| c2_1(X23) ) ) )
& ( hskp51
| ! [X24] :
( ndr1_0
=> ( ~ c1_1(X24)
| c0_1(X24)
| c3_1(X24) ) )
| hskp52 )
& ( hskp53
| hskp14
| hskp54 )
& ( ! [X25] :
( ndr1_0
=> ( c3_1(X25)
| c1_1(X25)
| ~ c0_1(X25) ) )
| ! [X26] :
( ndr1_0
=> ( c0_1(X26)
| c2_1(X26)
| c3_1(X26) ) )
| ! [X27] :
( ndr1_0
=> ( c2_1(X27)
| c0_1(X27)
| ~ c1_1(X27) ) ) )
& ( hskp15
| ! [X28] :
( ndr1_0
=> ( ~ c1_1(X28)
| ~ c2_1(X28)
| c3_1(X28) ) )
| ! [X29] :
( ndr1_0
=> ( c1_1(X29)
| ~ c3_1(X29)
| ~ c0_1(X29) ) ) )
& ( ! [X30] :
( ndr1_0
=> ( ~ c1_1(X30)
| c3_1(X30)
| ~ c2_1(X30) ) )
| ! [X31] :
( ndr1_0
=> ( ~ c1_1(X31)
| ~ c0_1(X31)
| c3_1(X31) ) )
| hskp36 )
& ( ! [X32] :
( ndr1_0
=> ( c1_1(X32)
| c2_1(X32)
| ~ c0_1(X32) ) )
| hskp16
| ! [X33] :
( ndr1_0
=> ( c0_1(X33)
| c2_1(X33)
| ~ c3_1(X33) ) ) )
& ( ! [X34] :
( ndr1_0
=> ( c1_1(X34)
| ~ c2_1(X34)
| ~ c3_1(X34) ) )
| hskp8
| hskp55 )
& ( hskp17
| hskp38
| hskp56 )
& ( hskp18
| ! [X35] :
( ndr1_0
=> ( c2_1(X35)
| c1_1(X35)
| ~ c3_1(X35) ) )
| hskp19 )
& ( ! [X36] :
( ndr1_0
=> ( ~ c2_1(X36)
| ~ c3_1(X36)
| ~ c0_1(X36) ) )
| hskp12
| hskp57 )
& ( ! [X37] :
( ndr1_0
=> ( c2_1(X37)
| c1_1(X37)
| ~ c0_1(X37) ) )
| ! [X38] :
( ndr1_0
=> ( c3_1(X38)
| c2_1(X38)
| c1_1(X38) ) )
| ! [X39] :
( ndr1_0
=> ( c0_1(X39)
| ~ c3_1(X39)
| c1_1(X39) ) ) )
& ( ! [X40] :
( ndr1_0
=> ( ~ c1_1(X40)
| ~ c0_1(X40)
| c2_1(X40) ) )
| ! [X41] :
( ndr1_0
=> ( ~ c3_1(X41)
| c1_1(X41)
| ~ c0_1(X41) ) )
| ! [X42] :
( ndr1_0
=> ( ~ c2_1(X42)
| ~ c1_1(X42)
| c3_1(X42) ) ) )
& ( hskp58
| ! [X43] :
( ndr1_0
=> ( ~ c1_1(X43)
| c2_1(X43)
| ~ c3_1(X43) ) )
| hskp7 )
& ( ! [X44] :
( ndr1_0
=> ( c2_1(X44)
| c1_1(X44)
| ~ c0_1(X44) ) )
| ! [X45] :
( ndr1_0
=> ( c3_1(X45)
| c0_1(X45)
| ~ c2_1(X45) ) )
| ! [X46] :
( ndr1_0
=> ( c3_1(X46)
| ~ c2_1(X46)
| c1_1(X46) ) ) )
& ( hskp20
| ! [X47] :
( ndr1_0
=> ( c2_1(X47)
| c1_1(X47)
| ~ c3_1(X47) ) )
| ! [X48] :
( ndr1_0
=> ( ~ c2_1(X48)
| ~ c1_1(X48)
| c3_1(X48) ) ) )
& ( hskp59
| ! [X49] :
( ndr1_0
=> ( ~ c1_1(X49)
| ~ c0_1(X49)
| ~ c2_1(X49) ) )
| hskp38 )
& ( hskp13
| ! [X50] :
( ndr1_0
=> ( c3_1(X50)
| c2_1(X50)
| c1_1(X50) ) )
| ! [X51] :
( ndr1_0
=> ( ~ c0_1(X51)
| ~ c1_1(X51)
| c2_1(X51) ) ) )
& ( ! [X52] :
( ndr1_0
=> ( ~ c0_1(X52)
| c1_1(X52)
| ~ c2_1(X52) ) )
| hskp21
| ! [X53] :
( ndr1_0
=> ( c2_1(X53)
| c1_1(X53)
| ~ c0_1(X53) ) ) )
& ( ! [X54] :
( ndr1_0
=> ( ~ c1_1(X54)
| ~ c0_1(X54)
| ~ c3_1(X54) ) )
| ! [X55] :
( ndr1_0
=> ( c0_1(X55)
| c3_1(X55)
| ~ c2_1(X55) ) )
| ! [X56] :
( ndr1_0
=> ( ~ c2_1(X56)
| ~ c1_1(X56)
| ~ c0_1(X56) ) ) )
& ( ! [X57] :
( ndr1_0
=> ( ~ c1_1(X57)
| ~ c0_1(X57)
| c3_1(X57) ) )
| ! [X58] :
( ndr1_0
=> ( c1_1(X58)
| c0_1(X58)
| ~ c3_1(X58) ) )
| hskp22 )
& ( ! [X59] :
( ndr1_0
=> ( c0_1(X59)
| c1_1(X59)
| c2_1(X59) ) )
| hskp57
| hskp23 )
& ( hskp24
| ! [X60] :
( ndr1_0
=> ( ~ c0_1(X60)
| c2_1(X60)
| c3_1(X60) ) )
| hskp60 )
& ( hskp54
| hskp25
| ! [X61] :
( ndr1_0
=> ( ~ c3_1(X61)
| ~ c0_1(X61)
| ~ c2_1(X61) ) ) )
& ( ! [X62] :
( ndr1_0
=> ( ~ c0_1(X62)
| ~ c1_1(X62)
| ~ c2_1(X62) ) )
| ! [X63] :
( ndr1_0
=> ( ~ c2_1(X63)
| c1_1(X63)
| ~ c0_1(X63) ) )
| hskp54 )
& ( ! [X64] :
( ndr1_0
=> ( ~ c0_1(X64)
| c3_1(X64)
| ~ c1_1(X64) ) )
| ! [X65] :
( ndr1_0
=> ( ~ c2_1(X65)
| c0_1(X65)
| ~ c3_1(X65) ) )
| hskp61 )
& ( hskp26
| ! [X66] :
( ndr1_0
=> ( c2_1(X66)
| c1_1(X66)
| ~ c3_1(X66) ) )
| hskp62 )
& ( hskp63
| hskp27
| ! [X67] :
( ndr1_0
=> ( c3_1(X67)
| c1_1(X67)
| ~ c2_1(X67) ) ) )
& ( hskp39
| hskp28
| hskp64 )
& ( hskp65
| hskp52
| hskp29 )
& ( hskp66
| ! [X68] :
( ndr1_0
=> ( c2_1(X68)
| ~ c1_1(X68)
| ~ c0_1(X68) ) )
| ! [X69] :
( ndr1_0
=> ( ~ c2_1(X69)
| ~ c1_1(X69)
| c3_1(X69) ) ) )
& ( ! [X70] :
( ndr1_0
=> ( c1_1(X70)
| ~ c3_1(X70)
| c2_1(X70) ) )
| ! [X71] :
( ndr1_0
=> ( ~ c1_1(X71)
| c3_1(X71)
| c2_1(X71) ) )
| hskp67 )
& ( ! [X72] :
( ndr1_0
=> ( c0_1(X72)
| c3_1(X72)
| c1_1(X72) ) )
| ! [X73] :
( ndr1_0
=> ( ~ c0_1(X73)
| ~ c3_1(X73)
| c1_1(X73) ) )
| hskp21 )
& ( hskp68
| hskp30
| ! [X74] :
( ndr1_0
=> ( c0_1(X74)
| c3_1(X74)
| ~ c2_1(X74) ) ) )
& ( ! [X75] :
( ndr1_0
=> ( c3_1(X75)
| c1_1(X75)
| c0_1(X75) ) )
| ! [X76] :
( ndr1_0
=> ( ~ c2_1(X76)
| c3_1(X76)
| ~ c0_1(X76) ) )
| hskp52 )
& ( hskp27
| hskp69
| ! [X77] :
( ndr1_0
=> ( ~ c1_1(X77)
| c2_1(X77)
| c0_1(X77) ) ) )
& ( ! [X78] :
( ndr1_0
=> ( ~ c1_1(X78)
| ~ c2_1(X78)
| ~ c0_1(X78) ) )
| hskp31
| hskp32 )
& ( ! [X79] :
( ndr1_0
=> ( c1_1(X79)
| c3_1(X79)
| ~ c2_1(X79) ) )
| hskp59
| hskp33 )
& ( hskp34
| ! [X80] :
( ndr1_0
=> ( ~ c3_1(X80)
| ~ c1_1(X80)
| c0_1(X80) ) )
| hskp35 )
& ( ! [X81] :
( ndr1_0
=> ( ~ c1_1(X81)
| c3_1(X81)
| c0_1(X81) ) )
| ! [X82] :
( ndr1_0
=> ( ~ c2_1(X82)
| c1_1(X82)
| ~ c3_1(X82) ) )
| hskp46 )
& ( ! [X83] :
( ndr1_0
=> ( ~ c1_1(X83)
| ~ c0_1(X83)
| c2_1(X83) ) )
| ! [X84] :
( ndr1_0
=> ( ~ c3_1(X84)
| ~ c2_1(X84)
| ~ c1_1(X84) ) )
| ! [X85] :
( ndr1_0
=> ( ~ c2_1(X85)
| ~ c3_1(X85)
| c1_1(X85) ) ) ) ) ).
%--------------------------------------------------------------------------