TPTP Problem File: SYN453+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN453+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=044
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-60-3-1-044.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v5.5.0, 0.40 v5.3.0, 0.50 v5.0.0, 0.33 v4.1.0, 0.67 v4.0.1, 0.33 v3.7.0, 0.00 v3.5.0, 0.25 v3.4.0, 0.33 v3.2.0, 0.25 v3.1.0, 0.50 v2.7.0, 0.67 v2.6.0, 0.50 v2.5.0, 0.67 v2.4.0, 0.33 v2.2.1, 1.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 796 ( 0 equ)
% Maximal formula atoms : 796 ( 796 avg)
% Number of connectives : 1108 ( 313 ~; 365 |; 343 &)
% ( 0 <=>; 87 =>; 0 <=; 0 <~>)
% Maximal formula depth : 139 ( 139 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 76 ( 76 usr; 72 prp; 0-1 aty)
% Number of functors : 71 ( 71 usr; 71 con; 0-0 aty)
% Number of variables : 87 ( 87 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& ~ c1_1(a1994)
& c0_1(a1994)
& ~ c3_1(a1994) ) )
& ( ~ hskp1
| ( ndr1_0
& c0_1(a1998)
& c3_1(a1998)
& ~ c1_1(a1998) ) )
& ( ~ hskp2
| ( ndr1_0
& ~ c2_1(a1999)
& c1_1(a1999)
& ~ c3_1(a1999) ) )
& ( ~ hskp3
| ( ndr1_0
& ~ c3_1(a2000)
& c1_1(a2000)
& ~ c0_1(a2000) ) )
& ( ~ hskp4
| ( ndr1_0
& ~ c3_1(a2001)
& ~ c2_1(a2001)
& ~ c1_1(a2001) ) )
& ( ~ hskp5
| ( ndr1_0
& ~ c1_1(a2006)
& c2_1(a2006)
& ~ c0_1(a2006) ) )
& ( ~ hskp6
| ( ndr1_0
& c3_1(a2009)
& ~ c0_1(a2009)
& ~ c1_1(a2009) ) )
& ( ~ hskp7
| ( ndr1_0
& ~ c3_1(a2011)
& c0_1(a2011)
& ~ c2_1(a2011) ) )
& ( ~ hskp8
| ( ndr1_0
& ~ c3_1(a2013)
& ~ c0_1(a2013)
& ~ c1_1(a2013) ) )
& ( ~ hskp9
| ( ndr1_0
& ~ c3_1(a2014)
& ~ c2_1(a2014)
& ~ c0_1(a2014) ) )
& ( ~ hskp10
| ( ndr1_0
& c3_1(a2015)
& c1_1(a2015)
& ~ c0_1(a2015) ) )
& ( ~ hskp11
| ( ndr1_0
& c0_1(a2016)
& c2_1(a2016)
& ~ c1_1(a2016) ) )
& ( ~ hskp12
| ( ndr1_0
& ~ c1_1(a2019)
& ~ c2_1(a2019)
& ~ c0_1(a2019) ) )
& ( ~ hskp13
| ( ndr1_0
& c1_1(a2020)
& ~ c3_1(a2020)
& ~ c2_1(a2020) ) )
& ( ~ hskp14
| ( ndr1_0
& c2_1(a2023)
& c0_1(a2023)
& ~ c3_1(a2023) ) )
& ( ~ hskp15
| ( ndr1_0
& ~ c2_1(a2031)
& ~ c3_1(a2031)
& ~ c0_1(a2031) ) )
& ( ~ hskp16
| ( ndr1_0
& ~ c1_1(a2032)
& c0_1(a2032)
& ~ c2_1(a2032) ) )
& ( ~ hskp17
| ( ndr1_0
& ~ c2_1(a2034)
& ~ c1_1(a2034)
& ~ c0_1(a2034) ) )
& ( ~ hskp18
| ( ndr1_0
& c3_1(a2036)
& c0_1(a2036)
& ~ c1_1(a2036) ) )
& ( ~ hskp19
| ( ndr1_0
& c1_1(a2038)
& c0_1(a2038)
& ~ c3_1(a2038) ) )
& ( ~ hskp20
| ( ndr1_0
& c1_1(a2041)
& c3_1(a2041)
& ~ c0_1(a2041) ) )
& ( ~ hskp21
| ( ndr1_0
& c3_1(a2044)
& ~ c1_1(a2044)
& ~ c0_1(a2044) ) )
& ( ~ hskp22
| ( ndr1_0
& c2_1(a2045)
& ~ c0_1(a2045)
& ~ c3_1(a2045) ) )
& ( ~ hskp23
| ( ndr1_0
& ~ c2_1(a2050)
& ~ c0_1(a2050)
& ~ c3_1(a2050) ) )
& ( ~ hskp24
| ( ndr1_0
& c2_1(a2057)
& ~ c3_1(a2057)
& ~ c0_1(a2057) ) )
& ( ~ hskp25
| ( ndr1_0
& ~ c3_1(a2062)
& ~ c1_1(a2062)
& ~ c2_1(a2062) ) )
& ( ~ hskp26
| ( ndr1_0
& c3_1(a2065)
& c2_1(a2065)
& ~ c0_1(a2065) ) )
& ( ~ hskp27
| ( ndr1_0
& c0_1(a2068)
& c1_1(a2068)
& ~ c2_1(a2068) ) )
& ( ~ hskp28
| ( ndr1_0
& c1_1(a2069)
& c2_1(a2069)
& ~ c0_1(a2069) ) )
& ( ~ hskp29
| ( ndr1_0
& c3_1(a2079)
& c2_1(a2079)
& ~ c1_1(a2079) ) )
& ( ~ hskp30
| ( ndr1_0
& ~ c1_1(a2080)
& ~ c0_1(a2080)
& ~ c2_1(a2080) ) )
& ( ~ hskp31
| ( ndr1_0
& ~ c1_1(a2081)
& ~ c3_1(a2081)
& ~ c2_1(a2081) ) )
& ( ~ hskp32
| ( ndr1_0
& ~ c2_1(a2083)
& ~ c3_1(a2083)
& ~ c1_1(a2083) ) )
& ( ~ hskp33
| ( ndr1_0
& c2_1(a1993)
& c1_1(a1993)
& c0_1(a1993) ) )
& ( ~ hskp34
| ( ndr1_0
& c0_1(a1995)
& ~ c3_1(a1995)
& c1_1(a1995) ) )
& ( ~ hskp35
| ( ndr1_0
& c2_1(a1996)
& c3_1(a1996)
& c0_1(a1996) ) )
& ( ~ hskp36
| ( ndr1_0
& ~ c2_1(a1997)
& ~ c3_1(a1997)
& c1_1(a1997) ) )
& ( ~ hskp37
| ( ndr1_0
& c3_1(a2002)
& ~ c0_1(a2002)
& c1_1(a2002) ) )
& ( ~ hskp38
| ( ndr1_0
& ~ c1_1(a2003)
& ~ c2_1(a2003)
& c3_1(a2003) ) )
& ( ~ hskp39
| ( ndr1_0
& c0_1(a2004)
& c2_1(a2004)
& c1_1(a2004) ) )
& ( ~ hskp40
| ( ndr1_0
& ~ c1_1(a2005)
& ~ c3_1(a2005)
& c0_1(a2005) ) )
& ( ~ hskp41
| ( ndr1_0
& c3_1(a2007)
& c1_1(a2007)
& c0_1(a2007) ) )
& ( ~ hskp42
| ( ndr1_0
& c3_1(a2010)
& ~ c0_1(a2010)
& c2_1(a2010) ) )
& ( ~ hskp43
| ( ndr1_0
& ~ c1_1(a2017)
& ~ c0_1(a2017)
& c2_1(a2017) ) )
& ( ~ hskp44
| ( ndr1_0
& c2_1(a2018)
& ~ c1_1(a2018)
& c0_1(a2018) ) )
& ( ~ hskp45
| ( ndr1_0
& c2_1(a2022)
& ~ c0_1(a2022)
& c3_1(a2022) ) )
& ( ~ hskp46
| ( ndr1_0
& c3_1(a2025)
& ~ c2_1(a2025)
& c0_1(a2025) ) )
& ( ~ hskp47
| ( ndr1_0
& c2_1(a2026)
& ~ c3_1(a2026)
& c0_1(a2026) ) )
& ( ~ hskp48
| ( ndr1_0
& c1_1(a2027)
& c3_1(a2027)
& c0_1(a2027) ) )
& ( ~ hskp49
| ( ndr1_0
& c0_1(a2028)
& ~ c1_1(a2028)
& c3_1(a2028) ) )
& ( ~ hskp50
| ( ndr1_0
& c1_1(a2029)
& ~ c3_1(a2029)
& c2_1(a2029) ) )
& ( ~ hskp51
| ( ndr1_0
& ~ c0_1(a2030)
& c2_1(a2030)
& c1_1(a2030) ) )
& ( ~ hskp52
| ( ndr1_0
& ~ c3_1(a2033)
& ~ c1_1(a2033)
& c2_1(a2033) ) )
& ( ~ hskp53
| ( ndr1_0
& c2_1(a2035)
& ~ c0_1(a2035)
& c1_1(a2035) ) )
& ( ~ hskp54
| ( ndr1_0
& ~ c0_1(a2037)
& c2_1(a2037)
& c3_1(a2037) ) )
& ( ~ hskp55
| ( ndr1_0
& c0_1(a2046)
& c1_1(a2046)
& c2_1(a2046) ) )
& ( ~ hskp56
| ( ndr1_0
& ~ c2_1(a2047)
& c3_1(a2047)
& c0_1(a2047) ) )
& ( ~ hskp57
| ( ndr1_0
& ~ c3_1(a2048)
& ~ c1_1(a2048)
& c0_1(a2048) ) )
& ( ~ hskp58
| ( ndr1_0
& ~ c2_1(a2051)
& ~ c1_1(a2051)
& c3_1(a2051) ) )
& ( ~ hskp59
| ( ndr1_0
& ~ c1_1(a2052)
& c0_1(a2052)
& c2_1(a2052) ) )
& ( ~ hskp60
| ( ndr1_0
& ~ c2_1(a2053)
& c0_1(a2053)
& c1_1(a2053) ) )
& ( ~ hskp61
| ( ndr1_0
& c1_1(a2054)
& c2_1(a2054)
& c3_1(a2054) ) )
& ( ~ hskp62
| ( ndr1_0
& ~ c2_1(a2058)
& c1_1(a2058)
& c3_1(a2058) ) )
& ( ~ hskp63
| ( ndr1_0
& ~ c3_1(a2059)
& c2_1(a2059)
& c1_1(a2059) ) )
& ( ~ hskp64
| ( ndr1_0
& c3_1(a2061)
& ~ c2_1(a2061)
& c1_1(a2061) ) )
& ( ~ hskp65
| ( ndr1_0
& ~ c3_1(a2063)
& c0_1(a2063)
& c1_1(a2063) ) )
& ( ~ hskp66
| ( ndr1_0
& c0_1(a2067)
& c3_1(a2067)
& c2_1(a2067) ) )
& ( ~ hskp67
| ( ndr1_0
& ~ c1_1(a2070)
& ~ c0_1(a2070)
& c3_1(a2070) ) )
& ( ~ hskp68
| ( ndr1_0
& c1_1(a2073)
& ~ c2_1(a2073)
& c0_1(a2073) ) )
& ( ~ hskp69
| ( ndr1_0
& ~ c2_1(a2074)
& ~ c3_1(a2074)
& c0_1(a2074) ) )
& ( ~ hskp70
| ( ndr1_0
& c2_1(a2078)
& c0_1(a2078)
& c3_1(a2078) ) )
& ( ! [U] :
( ndr1_0
=> ( ~ c2_1(U)
| c1_1(U)
| c0_1(U) ) )
| ! [V] :
( ndr1_0
=> ( c1_1(V)
| ~ c2_1(V)
| ~ c3_1(V) ) )
| hskp33 )
& ( ! [W] :
( ndr1_0
=> ( ~ c2_1(W)
| ~ c1_1(W)
| ~ c3_1(W) ) )
| ! [X] :
( ndr1_0
=> ( ~ c0_1(X)
| ~ c2_1(X)
| ~ c1_1(X) ) )
| hskp0 )
& ( hskp34
| hskp35
| ! [Y] :
( ndr1_0
=> ( c3_1(Y)
| ~ c1_1(Y)
| c2_1(Y) ) ) )
& ( hskp36
| ! [Z] :
( ndr1_0
=> ( ~ c0_1(Z)
| c3_1(Z)
| ~ c2_1(Z) ) )
| hskp1 )
& ( hskp2
| ! [X1] :
( ndr1_0
=> ( ~ c3_1(X1)
| c1_1(X1)
| ~ c2_1(X1) ) )
| ! [X2] :
( ndr1_0
=> ( ~ c1_1(X2)
| c3_1(X2)
| c0_1(X2) ) ) )
& ( hskp3
| ! [X3] :
( ndr1_0
=> ( c0_1(X3)
| ~ c1_1(X3)
| ~ c3_1(X3) ) )
| ! [X4] :
( ndr1_0
=> ( c0_1(X4)
| c3_1(X4)
| c1_1(X4) ) ) )
& ( hskp4
| ! [X5] :
( ndr1_0
=> ( c0_1(X5)
| c1_1(X5)
| ~ c2_1(X5) ) )
| hskp37 )
& ( hskp38
| ! [X6] :
( ndr1_0
=> ( c1_1(X6)
| ~ c0_1(X6)
| ~ c3_1(X6) ) )
| ! [X7] :
( ndr1_0
=> ( c2_1(X7)
| ~ c1_1(X7)
| c0_1(X7) ) ) )
& ( hskp39
| ! [X8] :
( ndr1_0
=> ( c2_1(X8)
| c0_1(X8)
| ~ c1_1(X8) ) )
| ! [X9] :
( ndr1_0
=> ( ~ c0_1(X9)
| c1_1(X9)
| ~ c2_1(X9) ) ) )
& ( ! [X10] :
( ndr1_0
=> ( c3_1(X10)
| c0_1(X10)
| ~ c2_1(X10) ) )
| hskp40
| hskp5 )
& ( hskp41
| hskp37
| ! [X11] :
( ndr1_0
=> ( c1_1(X11)
| c3_1(X11)
| c2_1(X11) ) ) )
& ( hskp6
| ! [X12] :
( ndr1_0
=> ( ~ c3_1(X12)
| ~ c0_1(X12)
| c1_1(X12) ) )
| ! [X13] :
( ndr1_0
=> ( c1_1(X13)
| c3_1(X13)
| ~ c0_1(X13) ) ) )
& ( ! [X14] :
( ndr1_0
=> ( ~ c0_1(X14)
| ~ c3_1(X14)
| ~ c2_1(X14) ) )
| ! [X15] :
( ndr1_0
=> ( c1_1(X15)
| ~ c2_1(X15)
| ~ c0_1(X15) ) )
| hskp42 )
& ( ! [X16] :
( ndr1_0
=> ( c1_1(X16)
| c0_1(X16)
| c2_1(X16) ) )
| hskp7
| ! [X17] :
( ndr1_0
=> ( c1_1(X17)
| ~ c2_1(X17)
| c0_1(X17) ) ) )
& ( ! [X18] :
( ndr1_0
=> ( ~ c0_1(X18)
| ~ c3_1(X18)
| ~ c1_1(X18) ) )
| hskp2
| hskp8 )
& ( ! [X19] :
( ndr1_0
=> ( c3_1(X19)
| ~ c2_1(X19)
| c0_1(X19) ) )
| ! [X20] :
( ndr1_0
=> ( ~ c0_1(X20)
| c2_1(X20)
| ~ c1_1(X20) ) )
| hskp9 )
& ( ! [X21] :
( ndr1_0
=> ( ~ c0_1(X21)
| c3_1(X21)
| ~ c1_1(X21) ) )
| hskp10
| ! [X22] :
( ndr1_0
=> ( c2_1(X22)
| ~ c0_1(X22)
| ~ c3_1(X22) ) ) )
& ( ! [X23] :
( ndr1_0
=> ( ~ c1_1(X23)
| ~ c2_1(X23)
| c0_1(X23) ) )
| ! [X24] :
( ndr1_0
=> ( ~ c0_1(X24)
| ~ c3_1(X24)
| ~ c2_1(X24) ) )
| ! [X25] :
( ndr1_0
=> ( c2_1(X25)
| c0_1(X25)
| ~ c1_1(X25) ) ) )
& ( ! [X26] :
( ndr1_0
=> ( c2_1(X26)
| ~ c3_1(X26)
| c0_1(X26) ) )
| hskp11
| ! [X27] :
( ndr1_0
=> ( c2_1(X27)
| c3_1(X27)
| ~ c0_1(X27) ) ) )
& ( ! [X28] :
( ndr1_0
=> ( ~ c1_1(X28)
| c0_1(X28)
| c2_1(X28) ) )
| hskp43
| ! [X29] :
( ndr1_0
=> ( ~ c1_1(X29)
| c3_1(X29)
| c0_1(X29) ) ) )
& ( hskp44
| ! [X30] :
( ndr1_0
=> ( ~ c3_1(X30)
| c2_1(X30)
| ~ c0_1(X30) ) )
| hskp12 )
& ( hskp13
| hskp38
| hskp45 )
& ( ! [X31] :
( ndr1_0
=> ( c0_1(X31)
| c2_1(X31)
| c1_1(X31) ) )
| ! [X32] :
( ndr1_0
=> ( c2_1(X32)
| c3_1(X32)
| ~ c0_1(X32) ) )
| hskp14 )
& ( hskp5
| hskp46
| ! [X33] :
( ndr1_0
=> ( c2_1(X33)
| ~ c1_1(X33)
| ~ c3_1(X33) ) ) )
& ( ! [X34] :
( ndr1_0
=> ( c0_1(X34)
| c3_1(X34)
| ~ c2_1(X34) ) )
| hskp47
| ! [X35] :
( ndr1_0
=> ( c3_1(X35)
| c1_1(X35)
| ~ c0_1(X35) ) ) )
& ( hskp48
| hskp49
| hskp50 )
& ( hskp51
| ! [X36] :
( ndr1_0
=> ( ~ c0_1(X36)
| c1_1(X36)
| c3_1(X36) ) )
| hskp15 )
& ( hskp16
| ! [X37] :
( ndr1_0
=> ( ~ c0_1(X37)
| c2_1(X37)
| c1_1(X37) ) )
| hskp52 )
& ( hskp17
| hskp53
| hskp18 )
& ( hskp54
| ! [X38] :
( ndr1_0
=> ( ~ c3_1(X38)
| ~ c0_1(X38)
| c2_1(X38) ) )
| ! [X39] :
( ndr1_0
=> ( ~ c2_1(X39)
| c3_1(X39)
| c1_1(X39) ) ) )
& ( hskp19
| hskp47
| hskp41 )
& ( hskp20
| ! [X40] :
( ndr1_0
=> ( c0_1(X40)
| c3_1(X40)
| c1_1(X40) ) )
| ! [X41] :
( ndr1_0
=> ( ~ c1_1(X41)
| c2_1(X41)
| c3_1(X41) ) ) )
& ( hskp43
| ! [X42] :
( ndr1_0
=> ( ~ c2_1(X42)
| c0_1(X42)
| ~ c1_1(X42) ) )
| hskp48 )
& ( hskp21
| ! [X43] :
( ndr1_0
=> ( ~ c2_1(X43)
| ~ c1_1(X43)
| c0_1(X43) ) )
| hskp22 )
& ( hskp55
| hskp56
| hskp57 )
& ( hskp56
| ! [X44] :
( ndr1_0
=> ( c0_1(X44)
| ~ c1_1(X44)
| ~ c3_1(X44) ) )
| ! [X45] :
( ndr1_0
=> ( ~ c3_1(X45)
| ~ c0_1(X45)
| ~ c2_1(X45) ) ) )
& ( hskp23
| hskp58
| hskp59 )
& ( hskp60
| hskp61
| ! [X46] :
( ndr1_0
=> ( c3_1(X46)
| ~ c2_1(X46)
| c0_1(X46) ) ) )
& ( hskp33
| hskp59
| ! [X47] :
( ndr1_0
=> ( ~ c2_1(X47)
| ~ c1_1(X47)
| c0_1(X47) ) ) )
& ( hskp24
| ! [X48] :
( ndr1_0
=> ( ~ c0_1(X48)
| ~ c1_1(X48)
| ~ c2_1(X48) ) )
| ! [X49] :
( ndr1_0
=> ( ~ c1_1(X49)
| ~ c0_1(X49)
| c2_1(X49) ) ) )
& ( hskp62
| ! [X50] :
( ndr1_0
=> ( ~ c3_1(X50)
| c1_1(X50)
| c0_1(X50) ) )
| hskp63 )
& ( ! [X51] :
( ndr1_0
=> ( c3_1(X51)
| c2_1(X51)
| c0_1(X51) ) )
| hskp2
| hskp64 )
& ( hskp25
| hskp65
| ! [X52] :
( ndr1_0
=> ( ~ c3_1(X52)
| c2_1(X52)
| c0_1(X52) ) ) )
& ( ! [X53] :
( ndr1_0
=> ( c2_1(X53)
| ~ c3_1(X53)
| ~ c1_1(X53) ) )
| ! [X54] :
( ndr1_0
=> ( ~ c0_1(X54)
| ~ c1_1(X54)
| ~ c3_1(X54) ) )
| ! [X55] :
( ndr1_0
=> ( ~ c3_1(X55)
| ~ c1_1(X55)
| c2_1(X55) ) ) )
& ( hskp49
| hskp26
| hskp6 )
& ( ! [X56] :
( ndr1_0
=> ( c2_1(X56)
| c0_1(X56)
| c1_1(X56) ) )
| hskp66
| ! [X57] :
( ndr1_0
=> ( ~ c0_1(X57)
| ~ c1_1(X57)
| c3_1(X57) ) ) )
& ( ! [X58] :
( ndr1_0
=> ( ~ c0_1(X58)
| ~ c3_1(X58)
| c1_1(X58) ) )
| ! [X59] :
( ndr1_0
=> ( ~ c0_1(X59)
| ~ c3_1(X59)
| ~ c1_1(X59) ) )
| ! [X60] :
( ndr1_0
=> ( ~ c2_1(X60)
| c1_1(X60)
| ~ c0_1(X60) ) ) )
& ( ! [X61] :
( ndr1_0
=> ( ~ c2_1(X61)
| ~ c1_1(X61)
| ~ c0_1(X61) ) )
| ! [X62] :
( ndr1_0
=> ( ~ c1_1(X62)
| c0_1(X62)
| c3_1(X62) ) )
| ! [X63] :
( ndr1_0
=> ( c2_1(X63)
| ~ c3_1(X63)
| ~ c0_1(X63) ) ) )
& ( hskp27
| ! [X64] :
( ndr1_0
=> ( ~ c1_1(X64)
| c3_1(X64)
| c2_1(X64) ) )
| ! [X65] :
( ndr1_0
=> ( ~ c3_1(X65)
| ~ c2_1(X65)
| c0_1(X65) ) ) )
& ( hskp28
| ! [X66] :
( ndr1_0
=> ( c3_1(X66)
| ~ c0_1(X66)
| c1_1(X66) ) )
| ! [X67] :
( ndr1_0
=> ( c2_1(X67)
| ~ c0_1(X67)
| ~ c1_1(X67) ) ) )
& ( hskp67
| hskp10
| ! [X68] :
( ndr1_0
=> ( ~ c1_1(X68)
| c2_1(X68)
| ~ c0_1(X68) ) ) )
& ( hskp21
| hskp68
| hskp69 )
& ( ! [X69] :
( ndr1_0
=> ( ~ c3_1(X69)
| c1_1(X69)
| c2_1(X69) ) )
| ! [X70] :
( ndr1_0
=> ( ~ c1_1(X70)
| ~ c3_1(X70)
| ~ c0_1(X70) ) )
| hskp42 )
& ( hskp48
| hskp54
| ! [X71] :
( ndr1_0
=> ( c2_1(X71)
| ~ c3_1(X71)
| ~ c0_1(X71) ) ) )
& ( hskp70
| ! [X72] :
( ndr1_0
=> ( c1_1(X72)
| ~ c2_1(X72)
| c0_1(X72) ) )
| hskp29 )
& ( ! [X73] :
( ndr1_0
=> ( ~ c1_1(X73)
| c3_1(X73)
| ~ c2_1(X73) ) )
| ! [X74] :
( ndr1_0
=> ( ~ c2_1(X74)
| ~ c0_1(X74)
| c1_1(X74) ) )
| ! [X75] :
( ndr1_0
=> ( c1_1(X75)
| c3_1(X75)
| c2_1(X75) ) ) )
& ( ! [X76] :
( ndr1_0
=> ( ~ c3_1(X76)
| ~ c0_1(X76)
| ~ c1_1(X76) ) )
| hskp30
| ! [X77] :
( ndr1_0
=> ( ~ c1_1(X77)
| c3_1(X77)
| ~ c0_1(X77) ) ) )
& ( hskp31
| ! [X78] :
( ndr1_0
=> ( c1_1(X78)
| c0_1(X78)
| c3_1(X78) ) )
| hskp47 )
& ( hskp32
| ! [X79] :
( ndr1_0
=> ( c3_1(X79)
| ~ c2_1(X79)
| ~ c0_1(X79) ) )
| hskp10 )
& ( ! [X80] :
( ndr1_0
=> ( ~ c2_1(X80)
| c0_1(X80)
| ~ c1_1(X80) ) )
| ! [X81] :
( ndr1_0
=> ( c1_1(X81)
| ~ c0_1(X81)
| c3_1(X81) ) )
| hskp20 ) ) ).
%--------------------------------------------------------------------------