TPTP Problem File: SYN447+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN447+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=017
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-60-3-1-017.dfg [Wei97]
% Status : Theorem
% Rating : 0.00 v6.1.0, 0.33 v6.0.0, 0.00 v5.5.0, 0.44 v5.3.0, 0.36 v5.2.0, 0.25 v5.0.0, 0.50 v4.1.0, 0.61 v4.0.1, 0.58 v4.0.0, 0.55 v3.7.0, 0.67 v3.5.0, 0.38 v3.4.0, 0.50 v3.3.0, 0.44 v3.2.0, 0.56 v3.1.0, 0.67 v2.6.0, 0.33 v2.5.0, 0.67 v2.4.0, 0.33 v2.2.1, 1.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 778 ( 0 equ)
% Maximal formula atoms : 778 ( 778 avg)
% Number of connectives : 1070 ( 293 ~; 369 |; 315 &)
% ( 0 <=>; 93 =>; 0 <=; 0 <~>)
% Maximal formula depth : 130 ( 130 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 69 ( 69 usr; 65 prp; 0-1 aty)
% Number of functors : 64 ( 64 usr; 64 con; 0-0 aty)
% Number of variables : 93 ( 93 !; 0 ?)
% SPC : FOF_THM_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& c0_1(a1020)
& ~ c1_1(a1020)
& ~ c2_1(a1020) ) )
& ( ~ hskp1
| ( ndr1_0
& c2_1(a1023)
& ~ c1_1(a1023)
& ~ c0_1(a1023) ) )
& ( ~ hskp2
| ( ndr1_0
& c2_1(a1024)
& c1_1(a1024)
& ~ c3_1(a1024) ) )
& ( ~ hskp3
| ( ndr1_0
& ~ c0_1(a1025)
& ~ c3_1(a1025)
& ~ c2_1(a1025) ) )
& ( ~ hskp4
| ( ndr1_0
& c0_1(a1026)
& ~ c2_1(a1026)
& ~ c1_1(a1026) ) )
& ( ~ hskp5
| ( ndr1_0
& c1_1(a1027)
& c2_1(a1027)
& ~ c3_1(a1027) ) )
& ( ~ hskp6
| ( ndr1_0
& ~ c2_1(a1030)
& ~ c3_1(a1030)
& ~ c0_1(a1030) ) )
& ( ~ hskp7
| ( ndr1_0
& c0_1(a1035)
& c1_1(a1035)
& ~ c2_1(a1035) ) )
& ( ~ hskp8
| ( ndr1_0
& c0_1(a1036)
& ~ c3_1(a1036)
& ~ c1_1(a1036) ) )
& ( ~ hskp9
| ( ndr1_0
& ~ c1_1(a1038)
& c2_1(a1038)
& ~ c0_1(a1038) ) )
& ( ~ hskp10
| ( ndr1_0
& c1_1(a1039)
& ~ c2_1(a1039)
& ~ c0_1(a1039) ) )
& ( ~ hskp11
| ( ndr1_0
& ~ c3_1(a1041)
& c1_1(a1041)
& ~ c2_1(a1041) ) )
& ( ~ hskp12
| ( ndr1_0
& ~ c1_1(a1043)
& c0_1(a1043)
& ~ c3_1(a1043) ) )
& ( ~ hskp13
| ( ndr1_0
& c0_1(a1048)
& c3_1(a1048)
& ~ c2_1(a1048) ) )
& ( ~ hskp14
| ( ndr1_0
& ~ c0_1(a1055)
& ~ c1_1(a1055)
& ~ c2_1(a1055) ) )
& ( ~ hskp15
| ( ndr1_0
& c3_1(a1059)
& c2_1(a1059)
& ~ c1_1(a1059) ) )
& ( ~ hskp16
| ( ndr1_0
& c2_1(a1064)
& c0_1(a1064)
& ~ c3_1(a1064) ) )
& ( ~ hskp17
| ( ndr1_0
& ~ c0_1(a1077)
& c3_1(a1077)
& ~ c2_1(a1077) ) )
& ( ~ hskp18
| ( ndr1_0
& c2_1(a1078)
& c0_1(a1078)
& ~ c1_1(a1078) ) )
& ( ~ hskp19
| ( ndr1_0
& c1_1(a1079)
& ~ c0_1(a1079)
& ~ c2_1(a1079) ) )
& ( ~ hskp20
| ( ndr1_0
& ~ c0_1(a1080)
& ~ c2_1(a1080)
& ~ c1_1(a1080) ) )
& ( ~ hskp21
| ( ndr1_0
& ~ c3_1(a1082)
& ~ c2_1(a1082)
& ~ c0_1(a1082) ) )
& ( ~ hskp22
| ( ndr1_0
& c2_1(a1083)
& c3_1(a1083)
& ~ c1_1(a1083) ) )
& ( ~ hskp23
| ( ndr1_0
& c1_1(a1088)
& c3_1(a1088)
& ~ c2_1(a1088) ) )
& ( ~ hskp24
| ( ndr1_0
& ~ c2_1(a1089)
& c0_1(a1089)
& ~ c1_1(a1089) ) )
& ( ~ hskp25
| ( ndr1_0
& ~ c3_1(a1091)
& ~ c0_1(a1091)
& ~ c2_1(a1091) ) )
& ( ~ hskp26
| ( ndr1_0
& ~ c3_1(a1098)
& c1_1(a1098)
& ~ c0_1(a1098) ) )
& ( ~ hskp27
| ( ndr1_0
& c3_1(a1101)
& c1_1(a1101)
& ~ c0_1(a1101) ) )
& ( ~ hskp28
| ( ndr1_0
& ~ c0_1(a1102)
& c2_1(a1102)
& ~ c1_1(a1102) ) )
& ( ~ hskp29
| ( ndr1_0
& ~ c1_1(a1021)
& ~ c3_1(a1021)
& c2_1(a1021) ) )
& ( ~ hskp30
| ( ndr1_0
& ~ c2_1(a1022)
& c3_1(a1022)
& c1_1(a1022) ) )
& ( ~ hskp31
| ( ndr1_0
& c0_1(a1028)
& ~ c1_1(a1028)
& c3_1(a1028) ) )
& ( ~ hskp32
| ( ndr1_0
& ~ c0_1(a1029)
& c1_1(a1029)
& c2_1(a1029) ) )
& ( ~ hskp33
| ( ndr1_0
& c3_1(a1031)
& ~ c1_1(a1031)
& c2_1(a1031) ) )
& ( ~ hskp34
| ( ndr1_0
& ~ c2_1(a1032)
& ~ c1_1(a1032)
& c3_1(a1032) ) )
& ( ~ hskp35
| ( ndr1_0
& c0_1(a1033)
& c1_1(a1033)
& c3_1(a1033) ) )
& ( ~ hskp36
| ( ndr1_0
& c3_1(a1034)
& ~ c0_1(a1034)
& c1_1(a1034) ) )
& ( ~ hskp37
| ( ndr1_0
& ~ c1_1(a1037)
& c0_1(a1037)
& c3_1(a1037) ) )
& ( ~ hskp38
| ( ndr1_0
& c1_1(a1040)
& c3_1(a1040)
& c2_1(a1040) ) )
& ( ~ hskp39
| ( ndr1_0
& c0_1(a1042)
& ~ c1_1(a1042)
& c2_1(a1042) ) )
& ( ~ hskp40
| ( ndr1_0
& ~ c1_1(a1044)
& c3_1(a1044)
& c0_1(a1044) ) )
& ( ~ hskp41
| ( ndr1_0
& ~ c1_1(a1045)
& ~ c0_1(a1045)
& c3_1(a1045) ) )
& ( ~ hskp42
| ( ndr1_0
& ~ c2_1(a1046)
& c1_1(a1046)
& c0_1(a1046) ) )
& ( ~ hskp43
| ( ndr1_0
& c0_1(a1049)
& c2_1(a1049)
& c1_1(a1049) ) )
& ( ~ hskp44
| ( ndr1_0
& c1_1(a1051)
& ~ c2_1(a1051)
& c0_1(a1051) ) )
& ( ~ hskp45
| ( ndr1_0
& c0_1(a1052)
& c3_1(a1052)
& c2_1(a1052) ) )
& ( ~ hskp46
| ( ndr1_0
& ~ c1_1(a1053)
& ~ c2_1(a1053)
& c0_1(a1053) ) )
& ( ~ hskp47
| ( ndr1_0
& c2_1(a1056)
& c1_1(a1056)
& c3_1(a1056) ) )
& ( ~ hskp48
| ( ndr1_0
& c3_1(a1062)
& c2_1(a1062)
& c0_1(a1062) ) )
& ( ~ hskp49
| ( ndr1_0
& ~ c0_1(a1065)
& ~ c2_1(a1065)
& c1_1(a1065) ) )
& ( ~ hskp50
| ( ndr1_0
& ~ c0_1(a1069)
& c3_1(a1069)
& c1_1(a1069) ) )
& ( ~ hskp51
| ( ndr1_0
& c2_1(a1070)
& ~ c1_1(a1070)
& c0_1(a1070) ) )
& ( ~ hskp52
| ( ndr1_0
& c1_1(a1071)
& c0_1(a1071)
& c3_1(a1071) ) )
& ( ~ hskp53
| ( ndr1_0
& c1_1(a1073)
& c2_1(a1073)
& c0_1(a1073) ) )
& ( ~ hskp54
| ( ndr1_0
& c3_1(a1074)
& c0_1(a1074)
& c2_1(a1074) ) )
& ( ~ hskp55
| ( ndr1_0
& c1_1(a1081)
& ~ c0_1(a1081)
& c3_1(a1081) ) )
& ( ~ hskp56
| ( ndr1_0
& ~ c3_1(a1084)
& ~ c1_1(a1084)
& c0_1(a1084) ) )
& ( ~ hskp57
| ( ndr1_0
& c2_1(a1085)
& c0_1(a1085)
& c3_1(a1085) ) )
& ( ~ hskp58
| ( ndr1_0
& ~ c0_1(a1086)
& c2_1(a1086)
& c3_1(a1086) ) )
& ( ~ hskp59
| ( ndr1_0
& ~ c0_1(a1095)
& ~ c3_1(a1095)
& c1_1(a1095) ) )
& ( ~ hskp60
| ( ndr1_0
& c2_1(a1097)
& ~ c0_1(a1097)
& c3_1(a1097) ) )
& ( ~ hskp61
| ( ndr1_0
& ~ c3_1(a1099)
& ~ c0_1(a1099)
& c2_1(a1099) ) )
& ( ~ hskp62
| ( ndr1_0
& c2_1(a1103)
& c3_1(a1103)
& c1_1(a1103) ) )
& ( ~ hskp63
| ( ndr1_0
& ~ c2_1(a1105)
& c1_1(a1105)
& c3_1(a1105) ) )
& ( hskp0
| hskp29
| hskp30 )
& ( ! [U] :
( ndr1_0
=> ( ~ c3_1(U)
| c2_1(U)
| c1_1(U) ) )
| ! [V] :
( ndr1_0
=> ( c1_1(V)
| ~ c0_1(V)
| ~ c2_1(V) ) )
| hskp1 )
& ( hskp2
| ! [W] :
( ndr1_0
=> ( c3_1(W)
| c2_1(W)
| c0_1(W) ) )
| ! [X] :
( ndr1_0
=> ( ~ c0_1(X)
| ~ c1_1(X)
| ~ c3_1(X) ) ) )
& ( ! [Y] :
( ndr1_0
=> ( c2_1(Y)
| c3_1(Y)
| c0_1(Y) ) )
| hskp3
| ! [Z] :
( ndr1_0
=> ( c1_1(Z)
| ~ c0_1(Z)
| c2_1(Z) ) ) )
& ( hskp4
| hskp5
| ! [X1] :
( ndr1_0
=> ( ~ c0_1(X1)
| ~ c2_1(X1)
| c3_1(X1) ) ) )
& ( hskp31
| ! [X2] :
( ndr1_0
=> ( ~ c0_1(X2)
| ~ c1_1(X2)
| c2_1(X2) ) )
| ! [X3] :
( ndr1_0
=> ( ~ c2_1(X3)
| c1_1(X3)
| c3_1(X3) ) ) )
& ( ! [X4] :
( ndr1_0
=> ( ~ c1_1(X4)
| ~ c0_1(X4)
| c3_1(X4) ) )
| hskp32
| hskp6 )
& ( hskp33
| ! [X5] :
( ndr1_0
=> ( ~ c1_1(X5)
| c2_1(X5)
| c0_1(X5) ) )
| ! [X6] :
( ndr1_0
=> ( ~ c1_1(X6)
| ~ c3_1(X6)
| ~ c2_1(X6) ) ) )
& ( ! [X7] :
( ndr1_0
=> ( c2_1(X7)
| ~ c1_1(X7)
| c3_1(X7) ) )
| ! [X8] :
( ndr1_0
=> ( c3_1(X8)
| c1_1(X8)
| ~ c0_1(X8) ) )
| hskp34 )
& ( ! [X9] :
( ndr1_0
=> ( c2_1(X9)
| c0_1(X9)
| c3_1(X9) ) )
| hskp35
| ! [X10] :
( ndr1_0
=> ( c0_1(X10)
| c2_1(X10)
| ~ c3_1(X10) ) ) )
& ( ! [X11] :
( ndr1_0
=> ( c2_1(X11)
| ~ c1_1(X11)
| c0_1(X11) ) )
| hskp36
| hskp7 )
& ( ! [X12] :
( ndr1_0
=> ( ~ c3_1(X12)
| ~ c1_1(X12)
| c0_1(X12) ) )
| hskp8
| hskp37 )
& ( ! [X13] :
( ndr1_0
=> ( c0_1(X13)
| c3_1(X13)
| c2_1(X13) ) )
| hskp9
| ! [X14] :
( ndr1_0
=> ( c0_1(X14)
| ~ c3_1(X14)
| c1_1(X14) ) ) )
& ( ! [X15] :
( ndr1_0
=> ( c3_1(X15)
| c2_1(X15)
| c0_1(X15) ) )
| hskp10 )
& ( ! [X16] :
( ndr1_0
=> ( ~ c3_1(X16)
| c2_1(X16)
| ~ c0_1(X16) ) )
| hskp38
| ! [X17] :
( ndr1_0
=> ( ~ c0_1(X17)
| ~ c3_1(X17)
| c1_1(X17) ) ) )
& ( hskp11
| ! [X18] :
( ndr1_0
=> ( ~ c0_1(X18)
| ~ c3_1(X18)
| ~ c1_1(X18) ) )
| hskp39 )
& ( hskp12
| ! [X19] :
( ndr1_0
=> ( ~ c2_1(X19)
| ~ c1_1(X19)
| ~ c0_1(X19) ) )
| ! [X20] :
( ndr1_0
=> ( ~ c3_1(X20)
| c2_1(X20)
| ~ c0_1(X20) ) ) )
& ( hskp40
| hskp41
| ! [X21] :
( ndr1_0
=> ( ~ c0_1(X21)
| c1_1(X21)
| ~ c2_1(X21) ) ) )
& ( hskp42
| ! [X22] :
( ndr1_0
=> ( c1_1(X22)
| c0_1(X22)
| ~ c2_1(X22) ) )
| ! [X23] :
( ndr1_0
=> ( ~ c1_1(X23)
| ~ c3_1(X23)
| c2_1(X23) ) ) )
& ( ! [X24] :
( ndr1_0
=> ( ~ c0_1(X24)
| c2_1(X24)
| ~ c1_1(X24) ) )
| ! [X25] :
( ndr1_0
=> ( c1_1(X25)
| ~ c0_1(X25)
| ~ c3_1(X25) ) )
| hskp4 )
& ( ! [X26] :
( ndr1_0
=> ( ~ c0_1(X26)
| ~ c2_1(X26)
| c3_1(X26) ) )
| hskp13
| hskp43 )
& ( ! [X27] :
( ndr1_0
=> ( c0_1(X27)
| ~ c2_1(X27)
| ~ c3_1(X27) ) )
| ! [X28] :
( ndr1_0
=> ( ~ c0_1(X28)
| ~ c3_1(X28)
| ~ c2_1(X28) ) )
| hskp7 )
& ( ! [X29] :
( ndr1_0
=> ( c1_1(X29)
| c3_1(X29)
| c2_1(X29) ) )
| hskp44
| hskp45 )
& ( hskp46
| hskp38
| hskp14 )
& ( ! [X30] :
( ndr1_0
=> ( ~ c0_1(X30)
| ~ c2_1(X30)
| c1_1(X30) ) )
| hskp47
| ! [X31] :
( ndr1_0
=> ( ~ c2_1(X31)
| ~ c0_1(X31)
| c3_1(X31) ) ) )
& ( hskp10
| ! [X32] :
( ndr1_0
=> ( ~ c1_1(X32)
| c0_1(X32)
| ~ c2_1(X32) ) )
| hskp43 )
& ( ! [X33] :
( ndr1_0
=> ( ~ c3_1(X33)
| c2_1(X33)
| c0_1(X33) ) )
| hskp15
| hskp33 )
& ( ! [X34] :
( ndr1_0
=> ( c0_1(X34)
| ~ c1_1(X34)
| c3_1(X34) ) )
| hskp36
| hskp48 )
& ( ! [X35] :
( ndr1_0
=> ( ~ c1_1(X35)
| c3_1(X35)
| c2_1(X35) ) )
| hskp42
| hskp16 )
& ( ! [X36] :
( ndr1_0
=> ( ~ c3_1(X36)
| c2_1(X36)
| ~ c0_1(X36) ) )
| ! [X37] :
( ndr1_0
=> ( c3_1(X37)
| c1_1(X37)
| c0_1(X37) ) )
| hskp49 )
& ( ! [X38] :
( ndr1_0
=> ( c3_1(X38)
| c2_1(X38)
| c0_1(X38) ) )
| hskp1
| ! [X39] :
( ndr1_0
=> ( c1_1(X39)
| c2_1(X39)
| ~ c0_1(X39) ) ) )
& ( ! [X40] :
( ndr1_0
=> ( c1_1(X40)
| c3_1(X40)
| c0_1(X40) ) )
| ! [X41] :
( ndr1_0
=> ( c0_1(X41)
| ~ c2_1(X41)
| c1_1(X41) ) )
| ! [X42] :
( ndr1_0
=> ( c3_1(X42)
| c1_1(X42)
| ~ c2_1(X42) ) ) )
& ( hskp7
| ! [X43] :
( ndr1_0
=> ( ~ c2_1(X43)
| ~ c1_1(X43)
| c3_1(X43) ) )
| hskp12 )
& ( ! [X44] :
( ndr1_0
=> ( c0_1(X44)
| ~ c2_1(X44)
| ~ c1_1(X44) ) )
| hskp50
| hskp51 )
& ( ! [X45] :
( ndr1_0
=> ( ~ c2_1(X45)
| c0_1(X45)
| c1_1(X45) ) )
| ! [X46] :
( ndr1_0
=> ( ~ c0_1(X46)
| c3_1(X46)
| c1_1(X46) ) )
| ! [X47] :
( ndr1_0
=> ( c3_1(X47)
| c1_1(X47)
| c2_1(X47) ) ) )
& ( hskp52
| hskp34
| ! [X48] :
( ndr1_0
=> ( ~ c3_1(X48)
| c1_1(X48)
| ~ c0_1(X48) ) ) )
& ( ! [X49] :
( ndr1_0
=> ( ~ c2_1(X49)
| ~ c3_1(X49)
| ~ c0_1(X49) ) )
| hskp53
| ! [X50] :
( ndr1_0
=> ( ~ c3_1(X50)
| c1_1(X50)
| ~ c2_1(X50) ) ) )
& ( hskp54
| hskp47
| ! [X51] :
( ndr1_0
=> ( ~ c3_1(X51)
| ~ c2_1(X51)
| ~ c1_1(X51) ) ) )
& ( ! [X52] :
( ndr1_0
=> ( ~ c2_1(X52)
| ~ c1_1(X52)
| ~ c3_1(X52) ) )
| ! [X53] :
( ndr1_0
=> ( c3_1(X53)
| ~ c0_1(X53)
| c1_1(X53) ) )
| ! [X54] :
( ndr1_0
=> ( ~ c0_1(X54)
| ~ c1_1(X54)
| c3_1(X54) ) ) )
& ( hskp39
| hskp17
| hskp18 )
& ( hskp19
| ! [X55] :
( ndr1_0
=> ( c1_1(X55)
| ~ c0_1(X55)
| c3_1(X55) ) )
| hskp20 )
& ( hskp55
| ! [X56] :
( ndr1_0
=> ( ~ c0_1(X56)
| c2_1(X56)
| c1_1(X56) ) )
| hskp21 )
& ( hskp22
| ! [X57] :
( ndr1_0
=> ( ~ c1_1(X57)
| c2_1(X57)
| ~ c3_1(X57) ) )
| hskp56 )
& ( ! [X58] :
( ndr1_0
=> ( ~ c1_1(X58)
| c0_1(X58)
| c2_1(X58) ) )
| ! [X59] :
( ndr1_0
=> ( c0_1(X59)
| c3_1(X59)
| c1_1(X59) ) )
| ! [X60] :
( ndr1_0
=> ( c3_1(X60)
| ~ c1_1(X60)
| c2_1(X60) ) ) )
& ( ! [X61] :
( ndr1_0
=> ( ~ c0_1(X61)
| ~ c3_1(X61)
| c2_1(X61) ) )
| ! [X62] :
( ndr1_0
=> ( ~ c2_1(X62)
| ~ c3_1(X62)
| c1_1(X62) ) )
| hskp57 )
& ( ! [X63] :
( ndr1_0
=> ( c2_1(X63)
| ~ c1_1(X63)
| ~ c3_1(X63) ) )
| ! [X64] :
( ndr1_0
=> ( ~ c3_1(X64)
| c1_1(X64)
| c2_1(X64) ) )
| hskp58 )
& ( hskp33
| hskp23
| ! [X65] :
( ndr1_0
=> ( ~ c0_1(X65)
| ~ c2_1(X65)
| ~ c3_1(X65) ) ) )
& ( ! [X66] :
( ndr1_0
=> ( c0_1(X66)
| ~ c1_1(X66)
| ~ c3_1(X66) ) )
| ! [X67] :
( ndr1_0
=> ( c1_1(X67)
| c0_1(X67)
| c3_1(X67) ) )
| hskp24 )
& ( ! [X68] :
( ndr1_0
=> ( ~ c1_1(X68)
| ~ c2_1(X68)
| ~ c3_1(X68) ) )
| hskp36
| ! [X69] :
( ndr1_0
=> ( ~ c1_1(X69)
| c0_1(X69)
| ~ c3_1(X69) ) ) )
& ( ! [X70] :
( ndr1_0
=> ( c2_1(X70)
| ~ c1_1(X70)
| c0_1(X70) ) )
| hskp25
| ! [X71] :
( ndr1_0
=> ( ~ c2_1(X71)
| ~ c1_1(X71)
| ~ c3_1(X71) ) ) )
& ( hskp51
| ! [X72] :
( ndr1_0
=> ( ~ c0_1(X72)
| ~ c3_1(X72)
| ~ c2_1(X72) ) )
| ! [X73] :
( ndr1_0
=> ( c1_1(X73)
| ~ c0_1(X73)
| c2_1(X73) ) ) )
& ( hskp48
| ! [X74] :
( ndr1_0
=> ( c0_1(X74)
| c2_1(X74)
| c1_1(X74) ) )
| hskp14 )
& ( ! [X75] :
( ndr1_0
=> ( c0_1(X75)
| ~ c2_1(X75)
| ~ c3_1(X75) ) )
| ! [X76] :
( ndr1_0
=> ( c3_1(X76)
| c1_1(X76)
| ~ c2_1(X76) ) )
| ! [X77] :
( ndr1_0
=> ( c0_1(X77)
| c1_1(X77)
| c2_1(X77) ) ) )
& ( ! [X78] :
( ndr1_0
=> ( ~ c1_1(X78)
| ~ c0_1(X78)
| ~ c2_1(X78) ) )
| ! [X79] :
( ndr1_0
=> ( ~ c2_1(X79)
| ~ c0_1(X79)
| ~ c3_1(X79) ) )
| ! [X80] :
( ndr1_0
=> ( ~ c0_1(X80)
| ~ c1_1(X80)
| ~ c2_1(X80) ) ) )
& ( ! [X81] :
( ndr1_0
=> ( ~ c3_1(X81)
| c2_1(X81)
| ~ c1_1(X81) ) )
| hskp59
| ! [X82] :
( ndr1_0
=> ( ~ c3_1(X82)
| c0_1(X82)
| c2_1(X82) ) ) )
& ( ! [X83] :
( ndr1_0
=> ( ~ c2_1(X83)
| ~ c3_1(X83)
| c0_1(X83) ) )
| ! [X84] :
( ndr1_0
=> ( c2_1(X84)
| c3_1(X84)
| ~ c1_1(X84) ) )
| hskp35 )
& ( ! [X85] :
( ndr1_0
=> ( ~ c0_1(X85)
| c1_1(X85)
| c2_1(X85) ) )
| hskp60
| hskp26 )
& ( ! [X86] :
( ndr1_0
=> ( ~ c3_1(X86)
| ~ c1_1(X86)
| c0_1(X86) ) )
| ! [X87] :
( ndr1_0
=> ( ~ c1_1(X87)
| c3_1(X87)
| c2_1(X87) ) )
| hskp61 )
& ( hskp43
| hskp27
| hskp28 )
& ( hskp62
| hskp56
| hskp63 ) ) ).
%--------------------------------------------------------------------------