TPTP Problem File: SYN441+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN441+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=010
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-60-3-1-010.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v5.5.0, 0.40 v5.3.0, 0.50 v5.0.0, 0.33 v4.1.0, 0.67 v4.0.1, 0.33 v3.7.0, 0.00 v3.5.0, 0.25 v3.4.0, 0.33 v3.2.0, 0.25 v3.1.0, 0.50 v2.6.0, 0.25 v2.5.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 845 ( 0 equ)
% Maximal formula atoms : 845 ( 845 avg)
% Number of connectives : 1178 ( 334 ~; 386 |; 363 &)
% ( 0 <=>; 95 =>; 0 <=; 0 <~>)
% Maximal formula depth : 144 ( 144 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 81 ( 81 usr; 77 prp; 0-1 aty)
% Number of functors : 76 ( 76 usr; 76 con; 0-0 aty)
% Number of variables : 95 ( 95 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& ~ c1_1(a1818)
& ~ c2_1(a1818)
& ~ c3_1(a1818) ) )
& ( ~ hskp1
| ( ndr1_0
& ~ c0_1(a1824)
& ~ c3_1(a1824)
& ~ c1_1(a1824) ) )
& ( ~ hskp2
| ( ndr1_0
& c3_1(a1826)
& c0_1(a1826)
& ~ c1_1(a1826) ) )
& ( ~ hskp3
| ( ndr1_0
& c3_1(a1828)
& ~ c1_1(a1828)
& ~ c0_1(a1828) ) )
& ( ~ hskp4
| ( ndr1_0
& ~ c3_1(a1829)
& ~ c1_1(a1829)
& ~ c2_1(a1829) ) )
& ( ~ hskp5
| ( ndr1_0
& c1_1(a1831)
& ~ c0_1(a1831)
& ~ c2_1(a1831) ) )
& ( ~ hskp6
| ( ndr1_0
& ~ c3_1(a1832)
& ~ c1_1(a1832)
& ~ c0_1(a1832) ) )
& ( ~ hskp7
| ( ndr1_0
& c3_1(a1833)
& ~ c2_1(a1833)
& ~ c1_1(a1833) ) )
& ( ~ hskp8
| ( ndr1_0
& c1_1(a1837)
& c0_1(a1837)
& ~ c3_1(a1837) ) )
& ( ~ hskp9
| ( ndr1_0
& c2_1(a1840)
& c0_1(a1840)
& ~ c3_1(a1840) ) )
& ( ~ hskp10
| ( ndr1_0
& ~ c0_1(a1841)
& c2_1(a1841)
& ~ c1_1(a1841) ) )
& ( ~ hskp11
| ( ndr1_0
& c3_1(a1843)
& ~ c2_1(a1843)
& ~ c0_1(a1843) ) )
& ( ~ hskp12
| ( ndr1_0
& ~ c3_1(a1844)
& ~ c0_1(a1844)
& ~ c2_1(a1844) ) )
& ( ~ hskp13
| ( ndr1_0
& c1_1(a1846)
& c3_1(a1846)
& ~ c2_1(a1846) ) )
& ( ~ hskp14
| ( ndr1_0
& ~ c2_1(a1847)
& c3_1(a1847)
& ~ c0_1(a1847) ) )
& ( ~ hskp15
| ( ndr1_0
& ~ c1_1(a1850)
& c3_1(a1850)
& ~ c0_1(a1850) ) )
& ( ~ hskp16
| ( ndr1_0
& c1_1(a1851)
& ~ c2_1(a1851)
& ~ c3_1(a1851) ) )
& ( ~ hskp17
| ( ndr1_0
& c0_1(a1853)
& c2_1(a1853)
& ~ c1_1(a1853) ) )
& ( ~ hskp18
| ( ndr1_0
& ~ c1_1(a1854)
& c0_1(a1854)
& ~ c3_1(a1854) ) )
& ( ~ hskp19
| ( ndr1_0
& ~ c0_1(a1855)
& c1_1(a1855)
& ~ c2_1(a1855) ) )
& ( ~ hskp20
| ( ndr1_0
& ~ c0_1(a1856)
& ~ c1_1(a1856)
& ~ c2_1(a1856) ) )
& ( ~ hskp21
| ( ndr1_0
& c3_1(a1857)
& c2_1(a1857)
& ~ c0_1(a1857) ) )
& ( ~ hskp22
| ( ndr1_0
& ~ c2_1(a1858)
& c0_1(a1858)
& ~ c3_1(a1858) ) )
& ( ~ hskp23
| ( ndr1_0
& ~ c2_1(a1859)
& ~ c3_1(a1859)
& ~ c1_1(a1859) ) )
& ( ~ hskp24
| ( ndr1_0
& c3_1(a1862)
& c0_1(a1862)
& ~ c2_1(a1862) ) )
& ( ~ hskp25
| ( ndr1_0
& c2_1(a1864)
& ~ c0_1(a1864)
& ~ c3_1(a1864) ) )
& ( ~ hskp26
| ( ndr1_0
& ~ c0_1(a1866)
& ~ c2_1(a1866)
& ~ c1_1(a1866) ) )
& ( ~ hskp27
| ( ndr1_0
& c0_1(a1869)
& c3_1(a1869)
& ~ c2_1(a1869) ) )
& ( ~ hskp28
| ( ndr1_0
& ~ c1_1(a1870)
& ~ c2_1(a1870)
& ~ c0_1(a1870) ) )
& ( ~ hskp29
| ( ndr1_0
& c0_1(a1872)
& ~ c3_1(a1872)
& ~ c1_1(a1872) ) )
& ( ~ hskp30
| ( ndr1_0
& c2_1(a1873)
& c1_1(a1873)
& ~ c0_1(a1873) ) )
& ( ~ hskp31
| ( ndr1_0
& c3_1(a1875)
& c2_1(a1875)
& ~ c1_1(a1875) ) )
& ( ~ hskp32
| ( ndr1_0
& ~ c1_1(a1876)
& c2_1(a1876)
& ~ c3_1(a1876) ) )
& ( ~ hskp33
| ( ndr1_0
& ~ c1_1(a1881)
& ~ c0_1(a1881)
& ~ c3_1(a1881) ) )
& ( ~ hskp34
| ( ndr1_0
& c3_1(a1882)
& c1_1(a1882)
& ~ c0_1(a1882) ) )
& ( ~ hskp35
| ( ndr1_0
& ~ c3_1(a1890)
& c1_1(a1890)
& ~ c0_1(a1890) ) )
& ( ~ hskp36
| ( ndr1_0
& c3_1(a1891)
& c1_1(a1891)
& ~ c2_1(a1891) ) )
& ( ~ hskp37
| ( ndr1_0
& c0_1(a1892)
& ~ c1_1(a1892)
& ~ c3_1(a1892) ) )
& ( ~ hskp38
| ( ndr1_0
& c1_1(a1895)
& ~ c2_1(a1895)
& ~ c0_1(a1895) ) )
& ( ~ hskp39
| ( ndr1_0
& ~ c0_1(a1896)
& ~ c1_1(a1896)
& ~ c3_1(a1896) ) )
& ( ~ hskp40
| ( ndr1_0
& c1_1(a1900)
& ~ c3_1(a1900)
& ~ c0_1(a1900) ) )
& ( ~ hskp41
| ( ndr1_0
& ~ c1_1(a1901)
& ~ c3_1(a1901)
& ~ c2_1(a1901) ) )
& ( ~ hskp42
| ( ndr1_0
& c2_1(a1819)
& c0_1(a1819)
& c3_1(a1819) ) )
& ( ~ hskp43
| ( ndr1_0
& ~ c1_1(a1820)
& ~ c0_1(a1820)
& c2_1(a1820) ) )
& ( ~ hskp44
| ( ndr1_0
& c3_1(a1821)
& ~ c2_1(a1821)
& c0_1(a1821) ) )
& ( ~ hskp45
| ( ndr1_0
& c0_1(a1822)
& c2_1(a1822)
& c3_1(a1822) ) )
& ( ~ hskp46
| ( ndr1_0
& ~ c0_1(a1823)
& c2_1(a1823)
& c3_1(a1823) ) )
& ( ~ hskp47
| ( ndr1_0
& c2_1(a1825)
& ~ c0_1(a1825)
& c3_1(a1825) ) )
& ( ~ hskp48
| ( ndr1_0
& ~ c3_1(a1827)
& ~ c1_1(a1827)
& c2_1(a1827) ) )
& ( ~ hskp49
| ( ndr1_0
& c3_1(a1830)
& c0_1(a1830)
& c2_1(a1830) ) )
& ( ~ hskp50
| ( ndr1_0
& c0_1(a1834)
& ~ c1_1(a1834)
& c2_1(a1834) ) )
& ( ~ hskp51
| ( ndr1_0
& c0_1(a1835)
& c3_1(a1835)
& c2_1(a1835) ) )
& ( ~ hskp52
| ( ndr1_0
& c0_1(a1836)
& ~ c3_1(a1836)
& c2_1(a1836) ) )
& ( ~ hskp53
| ( ndr1_0
& ~ c2_1(a1838)
& ~ c1_1(a1838)
& c0_1(a1838) ) )
& ( ~ hskp54
| ( ndr1_0
& ~ c2_1(a1839)
& ~ c0_1(a1839)
& c1_1(a1839) ) )
& ( ~ hskp55
| ( ndr1_0
& ~ c2_1(a1842)
& c0_1(a1842)
& c3_1(a1842) ) )
& ( ~ hskp56
| ( ndr1_0
& ~ c2_1(a1845)
& ~ c3_1(a1845)
& c0_1(a1845) ) )
& ( ~ hskp57
| ( ndr1_0
& ~ c0_1(a1848)
& ~ c1_1(a1848)
& c3_1(a1848) ) )
& ( ~ hskp58
| ( ndr1_0
& c2_1(a1849)
& c3_1(a1849)
& c1_1(a1849) ) )
& ( ~ hskp59
| ( ndr1_0
& c1_1(a1852)
& c0_1(a1852)
& c2_1(a1852) ) )
& ( ~ hskp60
| ( ndr1_0
& c1_1(a1860)
& c0_1(a1860)
& c3_1(a1860) ) )
& ( ~ hskp61
| ( ndr1_0
& ~ c3_1(a1863)
& ~ c0_1(a1863)
& c1_1(a1863) ) )
& ( ~ hskp62
| ( ndr1_0
& c2_1(a1867)
& c3_1(a1867)
& c0_1(a1867) ) )
& ( ~ hskp63
| ( ndr1_0
& c1_1(a1868)
& ~ c0_1(a1868)
& c3_1(a1868) ) )
& ( ~ hskp64
| ( ndr1_0
& c3_1(a1874)
& c1_1(a1874)
& c2_1(a1874) ) )
& ( ~ hskp65
| ( ndr1_0
& ~ c0_1(a1878)
& c3_1(a1878)
& c1_1(a1878) ) )
& ( ~ hskp66
| ( ndr1_0
& ~ c0_1(a1879)
& ~ c2_1(a1879)
& c1_1(a1879) ) )
& ( ~ hskp67
| ( ndr1_0
& c3_1(a1885)
& ~ c1_1(a1885)
& c2_1(a1885) ) )
& ( ~ hskp68
| ( ndr1_0
& c3_1(a1886)
& c0_1(a1886)
& c1_1(a1886) ) )
& ( ~ hskp69
| ( ndr1_0
& ~ c3_1(a1887)
& c0_1(a1887)
& c1_1(a1887) ) )
& ( ~ hskp70
| ( ndr1_0
& c1_1(a1889)
& c2_1(a1889)
& c3_1(a1889) ) )
& ( ~ hskp71
| ( ndr1_0
& ~ c1_1(a1894)
& c3_1(a1894)
& c0_1(a1894) ) )
& ( ~ hskp72
| ( ndr1_0
& ~ c0_1(a1897)
& ~ c1_1(a1897)
& c2_1(a1897) ) )
& ( ~ hskp73
| ( ndr1_0
& c3_1(a1898)
& c1_1(a1898)
& c0_1(a1898) ) )
& ( ~ hskp74
| ( ndr1_0
& c0_1(a1899)
& ~ c3_1(a1899)
& c1_1(a1899) ) )
& ( ~ hskp75
| ( ndr1_0
& ~ c3_1(a1902)
& c2_1(a1902)
& c1_1(a1902) ) )
& ( ! [U] :
( ndr1_0
=> ( ~ c1_1(U)
| c0_1(U)
| ~ c2_1(U) ) )
| ! [V] :
( ndr1_0
=> ( c1_1(V)
| c2_1(V)
| c0_1(V) ) )
| ! [W] :
( ndr1_0
=> ( c0_1(W)
| c2_1(W)
| ~ c3_1(W) ) ) )
& ( ! [X] :
( ndr1_0
=> ( ~ c0_1(X)
| ~ c3_1(X)
| ~ c2_1(X) ) )
| ! [Y] :
( ndr1_0
=> ( c1_1(Y)
| ~ c2_1(Y)
| ~ c0_1(Y) ) )
| hskp0 )
& ( ! [Z] :
( ndr1_0
=> ( ~ c3_1(Z)
| c2_1(Z)
| ~ c1_1(Z) ) )
| ! [X1] :
( ndr1_0
=> ( ~ c0_1(X1)
| ~ c1_1(X1)
| ~ c3_1(X1) ) )
| hskp42 )
& ( ! [X2] :
( ndr1_0
=> ( c2_1(X2)
| c0_1(X2)
| c1_1(X2) ) )
| hskp43
| ! [X3] :
( ndr1_0
=> ( c1_1(X3)
| c2_1(X3)
| ~ c3_1(X3) ) ) )
& ( ! [X4] :
( ndr1_0
=> ( c2_1(X4)
| ~ c3_1(X4)
| c1_1(X4) ) )
| ! [X5] :
( ndr1_0
=> ( c0_1(X5)
| c3_1(X5)
| c2_1(X5) ) )
| hskp44 )
& ( hskp45
| ! [X6] :
( ndr1_0
=> ( c2_1(X6)
| c0_1(X6)
| ~ c3_1(X6) ) )
| hskp46 )
& ( ! [X7] :
( ndr1_0
=> ( ~ c2_1(X7)
| c0_1(X7)
| ~ c1_1(X7) ) )
| hskp1
| hskp47 )
& ( ! [X8] :
( ndr1_0
=> ( c2_1(X8)
| c3_1(X8)
| c0_1(X8) ) )
| ! [X9] :
( ndr1_0
=> ( ~ c2_1(X9)
| ~ c1_1(X9)
| ~ c0_1(X9) ) )
| ! [X10] :
( ndr1_0
=> ( ~ c3_1(X10)
| c2_1(X10)
| c1_1(X10) ) ) )
& ( ! [X11] :
( ndr1_0
=> ( c0_1(X11)
| ~ c3_1(X11)
| c1_1(X11) ) )
| ! [X12] :
( ndr1_0
=> ( ~ c0_1(X12)
| ~ c2_1(X12)
| c3_1(X12) ) )
| ! [X13] :
( ndr1_0
=> ( ~ c2_1(X13)
| ~ c3_1(X13)
| c1_1(X13) ) ) )
& ( ! [X14] :
( ndr1_0
=> ( c1_1(X14)
| c0_1(X14)
| c3_1(X14) ) )
| ! [X15] :
( ndr1_0
=> ( ~ c3_1(X15)
| ~ c1_1(X15)
| ~ c2_1(X15) ) )
| hskp2 )
& ( ! [X16] :
( ndr1_0
=> ( ~ c3_1(X16)
| ~ c1_1(X16)
| ~ c2_1(X16) ) )
| hskp48
| hskp3 )
& ( ! [X17] :
( ndr1_0
=> ( ~ c1_1(X17)
| c0_1(X17)
| c2_1(X17) ) )
| ! [X18] :
( ndr1_0
=> ( c0_1(X18)
| c2_1(X18)
| c3_1(X18) ) )
| hskp4 )
& ( hskp49
| hskp5
| ! [X19] :
( ndr1_0
=> ( ~ c2_1(X19)
| ~ c0_1(X19)
| ~ c3_1(X19) ) ) )
& ( ! [X20] :
( ndr1_0
=> ( c3_1(X20)
| c1_1(X20)
| c2_1(X20) ) )
| hskp6
| hskp7 )
& ( hskp50
| ! [X21] :
( ndr1_0
=> ( ~ c3_1(X21)
| c0_1(X21)
| ~ c2_1(X21) ) )
| ! [X22] :
( ndr1_0
=> ( c0_1(X22)
| ~ c1_1(X22)
| c3_1(X22) ) ) )
& ( ! [X23] :
( ndr1_0
=> ( ~ c2_1(X23)
| c0_1(X23)
| c3_1(X23) ) )
| ! [X24] :
( ndr1_0
=> ( ~ c2_1(X24)
| c3_1(X24)
| c0_1(X24) ) )
| ! [X25] :
( ndr1_0
=> ( c1_1(X25)
| c2_1(X25)
| c3_1(X25) ) ) )
& ( ! [X26] :
( ndr1_0
=> ( ~ c0_1(X26)
| ~ c1_1(X26)
| c3_1(X26) ) )
| ! [X27] :
( ndr1_0
=> ( ~ c1_1(X27)
| ~ c2_1(X27)
| ~ c3_1(X27) ) )
| ! [X28] :
( ndr1_0
=> ( c3_1(X28)
| c2_1(X28)
| ~ c1_1(X28) ) ) )
& ( ! [X29] :
( ndr1_0
=> ( ~ c1_1(X29)
| ~ c3_1(X29)
| c0_1(X29) ) )
| hskp51
| ! [X30] :
( ndr1_0
=> ( c2_1(X30)
| ~ c0_1(X30)
| ~ c1_1(X30) ) ) )
& ( ! [X31] :
( ndr1_0
=> ( ~ c0_1(X31)
| c1_1(X31)
| c3_1(X31) ) )
| ! [X32] :
( ndr1_0
=> ( ~ c3_1(X32)
| ~ c1_1(X32)
| ~ c0_1(X32) ) )
| hskp52 )
& ( ! [X33] :
( ndr1_0
=> ( c3_1(X33)
| ~ c1_1(X33)
| c2_1(X33) ) )
| hskp8
| ! [X34] :
( ndr1_0
=> ( ~ c0_1(X34)
| ~ c3_1(X34)
| ~ c2_1(X34) ) ) )
& ( ! [X35] :
( ndr1_0
=> ( ~ c2_1(X35)
| ~ c1_1(X35)
| ~ c0_1(X35) ) )
| hskp53
| hskp54 )
& ( ! [X36] :
( ndr1_0
=> ( c2_1(X36)
| c3_1(X36)
| ~ c1_1(X36) ) )
| ! [X37] :
( ndr1_0
=> ( ~ c3_1(X37)
| ~ c1_1(X37)
| c2_1(X37) ) )
| hskp9 )
& ( hskp10
| ! [X38] :
( ndr1_0
=> ( c3_1(X38)
| ~ c2_1(X38)
| c1_1(X38) ) )
| ! [X39] :
( ndr1_0
=> ( c0_1(X39)
| ~ c3_1(X39)
| c2_1(X39) ) ) )
& ( ! [X40] :
( ndr1_0
=> ( ~ c1_1(X40)
| c3_1(X40)
| ~ c2_1(X40) ) )
| ! [X41] :
( ndr1_0
=> ( c0_1(X41)
| ~ c2_1(X41)
| ~ c1_1(X41) ) )
| ! [X42] :
( ndr1_0
=> ( ~ c1_1(X42)
| c0_1(X42)
| c2_1(X42) ) ) )
& ( ! [X43] :
( ndr1_0
=> ( c1_1(X43)
| c0_1(X43)
| ~ c2_1(X43) ) )
| ! [X44] :
( ndr1_0
=> ( c1_1(X44)
| c0_1(X44)
| c2_1(X44) ) )
| hskp55 )
& ( hskp11
| hskp12
| hskp56 )
& ( ! [X45] :
( ndr1_0
=> ( c0_1(X45)
| ~ c3_1(X45)
| c1_1(X45) ) )
| ! [X46] :
( ndr1_0
=> ( ~ c2_1(X46)
| c3_1(X46)
| ~ c1_1(X46) ) )
| ! [X47] :
( ndr1_0
=> ( ~ c1_1(X47)
| c0_1(X47)
| c3_1(X47) ) ) )
& ( hskp13
| hskp14
| hskp57 )
& ( hskp58
| ! [X48] :
( ndr1_0
=> ( c3_1(X48)
| c0_1(X48)
| ~ c1_1(X48) ) )
| hskp15 )
& ( hskp16
| ! [X49] :
( ndr1_0
=> ( c0_1(X49)
| c3_1(X49)
| c1_1(X49) ) )
| ! [X50] :
( ndr1_0
=> ( ~ c3_1(X50)
| ~ c2_1(X50)
| ~ c1_1(X50) ) ) )
& ( ! [X51] :
( ndr1_0
=> ( ~ c2_1(X51)
| ~ c0_1(X51)
| ~ c3_1(X51) ) )
| hskp59
| hskp17 )
& ( hskp18
| hskp19
| ! [X52] :
( ndr1_0
=> ( c0_1(X52)
| c2_1(X52)
| c1_1(X52) ) ) )
& ( hskp20
| hskp21
| hskp22 )
& ( hskp23
| ! [X53] :
( ndr1_0
=> ( ~ c3_1(X53)
| c0_1(X53)
| ~ c2_1(X53) ) )
| hskp60 )
& ( ! [X54] :
( ndr1_0
=> ( c2_1(X54)
| c0_1(X54)
| c3_1(X54) ) )
| hskp49
| ! [X55] :
( ndr1_0
=> ( c0_1(X55)
| ~ c3_1(X55)
| ~ c1_1(X55) ) ) )
& ( hskp24
| hskp61
| ! [X56] :
( ndr1_0
=> ( c0_1(X56)
| ~ c1_1(X56)
| ~ c3_1(X56) ) ) )
& ( hskp25
| hskp11
| hskp26 )
& ( ! [X57] :
( ndr1_0
=> ( ~ c2_1(X57)
| ~ c3_1(X57)
| c1_1(X57) ) )
| hskp62
| hskp63 )
& ( hskp27
| hskp28
| hskp42 )
& ( hskp29
| hskp30
| ! [X58] :
( ndr1_0
=> ( c1_1(X58)
| c2_1(X58)
| c0_1(X58) ) ) )
& ( ! [X59] :
( ndr1_0
=> ( c3_1(X59)
| ~ c2_1(X59)
| c0_1(X59) ) )
| hskp64
| ! [X60] :
( ndr1_0
=> ( c3_1(X60)
| ~ c0_1(X60)
| c2_1(X60) ) ) )
& ( ! [X61] :
( ndr1_0
=> ( c0_1(X61)
| c3_1(X61)
| c1_1(X61) ) )
| hskp31
| hskp32 )
& ( ! [X62] :
( ndr1_0
=> ( c0_1(X62)
| ~ c2_1(X62)
| ~ c1_1(X62) ) )
| ! [X63] :
( ndr1_0
=> ( ~ c2_1(X63)
| ~ c1_1(X63)
| ~ c3_1(X63) ) )
| ! [X64] :
( ndr1_0
=> ( c3_1(X64)
| c2_1(X64)
| c1_1(X64) ) ) )
& ( ! [X65] :
( ndr1_0
=> ( ~ c2_1(X65)
| c3_1(X65)
| c0_1(X65) ) )
| ! [X66] :
( ndr1_0
=> ( c1_1(X66)
| ~ c0_1(X66)
| ~ c2_1(X66) ) )
| hskp63 )
& ( hskp65
| ! [X67] :
( ndr1_0
=> ( c0_1(X67)
| ~ c3_1(X67)
| c2_1(X67) ) )
| hskp66 )
& ( ! [X68] :
( ndr1_0
=> ( c1_1(X68)
| ~ c2_1(X68)
| c3_1(X68) ) )
| hskp32
| hskp33 )
& ( ! [X69] :
( ndr1_0
=> ( c0_1(X69)
| c1_1(X69)
| c3_1(X69) ) )
| hskp34
| ! [X70] :
( ndr1_0
=> ( ~ c0_1(X70)
| c3_1(X70)
| ~ c1_1(X70) ) ) )
& ( hskp47
| ! [X71] :
( ndr1_0
=> ( ~ c1_1(X71)
| c3_1(X71)
| ~ c2_1(X71) ) )
| hskp22 )
& ( hskp67
| hskp68
| hskp69 )
& ( ! [X72] :
( ndr1_0
=> ( ~ c3_1(X72)
| ~ c0_1(X72)
| c1_1(X72) ) )
| ! [X73] :
( ndr1_0
=> ( ~ c1_1(X73)
| ~ c2_1(X73)
| ~ c3_1(X73) ) )
| ! [X74] :
( ndr1_0
=> ( c0_1(X74)
| c2_1(X74)
| ~ c3_1(X74) ) ) )
& ( hskp61
| hskp70
| ! [X75] :
( ndr1_0
=> ( ~ c3_1(X75)
| ~ c2_1(X75)
| ~ c0_1(X75) ) ) )
& ( hskp35
| ! [X76] :
( ndr1_0
=> ( ~ c2_1(X76)
| ~ c0_1(X76)
| ~ c1_1(X76) ) )
| ! [X77] :
( ndr1_0
=> ( c1_1(X77)
| ~ c0_1(X77)
| c3_1(X77) ) ) )
& ( ! [X78] :
( ndr1_0
=> ( c2_1(X78)
| c1_1(X78)
| c0_1(X78) ) )
| ! [X79] :
( ndr1_0
=> ( ~ c2_1(X79)
| c3_1(X79)
| ~ c1_1(X79) ) )
| hskp36 )
& ( hskp37
| ! [X80] :
( ndr1_0
=> ( ~ c0_1(X80)
| ~ c3_1(X80)
| ~ c1_1(X80) ) )
| hskp28 )
& ( ! [X81] :
( ndr1_0
=> ( c2_1(X81)
| c1_1(X81)
| c3_1(X81) ) )
| hskp71
| hskp38 )
& ( ! [X82] :
( ndr1_0
=> ( ~ c0_1(X82)
| ~ c1_1(X82)
| ~ c3_1(X82) ) )
| hskp39
| hskp72 )
& ( ! [X83] :
( ndr1_0
=> ( c2_1(X83)
| c3_1(X83)
| c0_1(X83) ) )
| ! [X84] :
( ndr1_0
=> ( ~ c1_1(X84)
| ~ c0_1(X84)
| c3_1(X84) ) )
| ! [X85] :
( ndr1_0
=> ( ~ c3_1(X85)
| ~ c1_1(X85)
| ~ c0_1(X85) ) ) )
& ( hskp73
| ! [X86] :
( ndr1_0
=> ( ~ c0_1(X86)
| c3_1(X86)
| ~ c1_1(X86) ) )
| hskp74 )
& ( ! [X87] :
( ndr1_0
=> ( c2_1(X87)
| c1_1(X87)
| ~ c0_1(X87) ) )
| hskp40
| hskp41 )
& ( ! [X88] :
( ndr1_0
=> ( c0_1(X88)
| ~ c2_1(X88)
| c3_1(X88) ) )
| hskp75
| ! [X89] :
( ndr1_0
=> ( ~ c0_1(X89)
| ~ c2_1(X89)
| ~ c1_1(X89) ) ) ) ) ).
%--------------------------------------------------------------------------