TPTP Problem File: SYN440+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN440+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=60, K=3, D=1, P=0, Index=002
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-60-3-1-002.dfg [Wei97]
% Status : Theorem
% Rating : 0.00 v7.0.0, 0.25 v6.4.0, 0.00 v6.1.0, 0.17 v6.0.0, 0.00 v5.5.0, 0.33 v5.4.0, 0.44 v5.3.0, 0.55 v5.2.0, 0.50 v4.1.0, 0.67 v4.0.1, 0.68 v4.0.0, 0.70 v3.7.0, 0.67 v3.5.0, 0.50 v3.4.0, 0.58 v3.3.0, 0.56 v3.2.0, 0.67 v2.7.0, 0.33 v2.6.0, 0.00 v2.5.0, 0.33 v2.4.0, 0.67 v2.2.1, 1.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 805 ( 0 equ)
% Maximal formula atoms : 805 ( 805 avg)
% Number of connectives : 1120 ( 316 ~; 380 |; 327 &)
% ( 0 <=>; 97 =>; 0 <=; 0 <~>)
% Maximal formula depth : 135 ( 135 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 72 ( 72 usr; 68 prp; 0-1 aty)
% Number of functors : 67 ( 67 usr; 67 con; 0-0 aty)
% Number of variables : 97 ( 97 !; 0 ?)
% SPC : FOF_THM_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& c0_1(a597)
& ~ c3_1(a597)
& ~ c1_1(a597) ) )
& ( ~ hskp1
| ( ndr1_0
& c0_1(a598)
& c2_1(a598)
& ~ c1_1(a598) ) )
& ( ~ hskp2
| ( ndr1_0
& c0_1(a601)
& ~ c2_1(a601)
& ~ c3_1(a601) ) )
& ( ~ hskp3
| ( ndr1_0
& c0_1(a603)
& ~ c1_1(a603)
& ~ c3_1(a603) ) )
& ( ~ hskp4
| ( ndr1_0
& ~ c2_1(a604)
& ~ c0_1(a604)
& ~ c3_1(a604) ) )
& ( ~ hskp5
| ( ndr1_0
& ~ c0_1(a606)
& c2_1(a606)
& ~ c3_1(a606) ) )
& ( ~ hskp6
| ( ndr1_0
& c2_1(a609)
& ~ c0_1(a609)
& ~ c1_1(a609) ) )
& ( ~ hskp7
| ( ndr1_0
& c1_1(a610)
& ~ c2_1(a610)
& ~ c0_1(a610) ) )
& ( ~ hskp8
| ( ndr1_0
& ~ c2_1(a612)
& c3_1(a612)
& ~ c1_1(a612) ) )
& ( ~ hskp9
| ( ndr1_0
& c1_1(a613)
& c2_1(a613)
& ~ c3_1(a613) ) )
& ( ~ hskp10
| ( ndr1_0
& c0_1(a615)
& c3_1(a615)
& ~ c2_1(a615) ) )
& ( ~ hskp11
| ( ndr1_0
& c0_1(a616)
& c1_1(a616)
& ~ c2_1(a616) ) )
& ( ~ hskp12
| ( ndr1_0
& ~ c0_1(a620)
& ~ c3_1(a620)
& ~ c1_1(a620) ) )
& ( ~ hskp13
| ( ndr1_0
& ~ c1_1(a622)
& ~ c2_1(a622)
& ~ c0_1(a622) ) )
& ( ~ hskp14
| ( ndr1_0
& c3_1(a624)
& ~ c1_1(a624)
& ~ c2_1(a624) ) )
& ( ~ hskp15
| ( ndr1_0
& ~ c2_1(a625)
& ~ c1_1(a625)
& ~ c0_1(a625) ) )
& ( ~ hskp16
| ( ndr1_0
& c2_1(a627)
& c0_1(a627)
& ~ c3_1(a627) ) )
& ( ~ hskp17
| ( ndr1_0
& c3_1(a628)
& ~ c2_1(a628)
& ~ c1_1(a628) ) )
& ( ~ hskp18
| ( ndr1_0
& c0_1(a632)
& c3_1(a632)
& ~ c1_1(a632) ) )
& ( ~ hskp19
| ( ndr1_0
& ~ c1_1(a634)
& ~ c0_1(a634)
& ~ c3_1(a634) ) )
& ( ~ hskp20
| ( ndr1_0
& ~ c1_1(a635)
& ~ c2_1(a635)
& ~ c3_1(a635) ) )
& ( ~ hskp21
| ( ndr1_0
& c1_1(a637)
& c0_1(a637)
& ~ c3_1(a637) ) )
& ( ~ hskp22
| ( ndr1_0
& c0_1(a641)
& ~ c1_1(a641)
& ~ c2_1(a641) ) )
& ( ~ hskp23
| ( ndr1_0
& c2_1(a642)
& c3_1(a642)
& ~ c0_1(a642) ) )
& ( ~ hskp24
| ( ndr1_0
& ~ c0_1(a643)
& c3_1(a643)
& ~ c1_1(a643) ) )
& ( ~ hskp25
| ( ndr1_0
& c3_1(a646)
& ~ c2_1(a646)
& ~ c0_1(a646) ) )
& ( ~ hskp26
| ( ndr1_0
& ~ c1_1(a652)
& c3_1(a652)
& ~ c2_1(a652) ) )
& ( ~ hskp27
| ( ndr1_0
& ~ c3_1(a654)
& ~ c0_1(a654)
& ~ c1_1(a654) ) )
& ( ~ hskp28
| ( ndr1_0
& ~ c3_1(a656)
& c1_1(a656)
& ~ c0_1(a656) ) )
& ( ~ hskp29
| ( ndr1_0
& ~ c1_1(a660)
& ~ c3_1(a660)
& ~ c0_1(a660) ) )
& ( ~ hskp30
| ( ndr1_0
& ~ c2_1(a666)
& c0_1(a666)
& ~ c3_1(a666) ) )
& ( ~ hskp31
| ( ndr1_0
& ~ c2_1(a667)
& c1_1(a667)
& ~ c0_1(a667) ) )
& ( ~ hskp32
| ( ndr1_0
& c0_1(a677)
& ~ c3_1(a677)
& ~ c2_1(a677) ) )
& ( ~ hskp33
| ( ndr1_0
& ~ c2_1(a599)
& c0_1(a599)
& c3_1(a599) ) )
& ( ~ hskp34
| ( ndr1_0
& ~ c3_1(a600)
& c2_1(a600)
& c0_1(a600) ) )
& ( ~ hskp35
| ( ndr1_0
& ~ c3_1(a602)
& ~ c1_1(a602)
& c2_1(a602) ) )
& ( ~ hskp36
| ( ndr1_0
& c1_1(a605)
& ~ c3_1(a605)
& c0_1(a605) ) )
& ( ~ hskp37
| ( ndr1_0
& c1_1(a607)
& ~ c2_1(a607)
& c0_1(a607) ) )
& ( ~ hskp38
| ( ndr1_0
& c1_1(a608)
& c3_1(a608)
& c0_1(a608) ) )
& ( ~ hskp39
| ( ndr1_0
& ~ c1_1(a611)
& c3_1(a611)
& c2_1(a611) ) )
& ( ~ hskp40
| ( ndr1_0
& c2_1(a614)
& c1_1(a614)
& c0_1(a614) ) )
& ( ~ hskp41
| ( ndr1_0
& c2_1(a617)
& ~ c1_1(a617)
& c3_1(a617) ) )
& ( ~ hskp42
| ( ndr1_0
& ~ c2_1(a618)
& ~ c3_1(a618)
& c1_1(a618) ) )
& ( ~ hskp43
| ( ndr1_0
& ~ c3_1(a619)
& ~ c1_1(a619)
& c0_1(a619) ) )
& ( ~ hskp44
| ( ndr1_0
& c2_1(a621)
& ~ c0_1(a621)
& c3_1(a621) ) )
& ( ~ hskp45
| ( ndr1_0
& ~ c0_1(a623)
& c3_1(a623)
& c2_1(a623) ) )
& ( ~ hskp46
| ( ndr1_0
& c1_1(a626)
& c0_1(a626)
& c3_1(a626) ) )
& ( ~ hskp47
| ( ndr1_0
& ~ c1_1(a636)
& ~ c0_1(a636)
& c3_1(a636) ) )
& ( ~ hskp48
| ( ndr1_0
& ~ c3_1(a638)
& c1_1(a638)
& c2_1(a638) ) )
& ( ~ hskp49
| ( ndr1_0
& ~ c2_1(a639)
& ~ c0_1(a639)
& c1_1(a639) ) )
& ( ~ hskp50
| ( ndr1_0
& ~ c3_1(a640)
& c1_1(a640)
& c0_1(a640) ) )
& ( ~ hskp51
| ( ndr1_0
& c2_1(a644)
& ~ c3_1(a644)
& c0_1(a644) ) )
& ( ~ hskp52
| ( ndr1_0
& ~ c2_1(a647)
& ~ c1_1(a647)
& c0_1(a647) ) )
& ( ~ hskp53
| ( ndr1_0
& c3_1(a648)
& ~ c2_1(a648)
& c0_1(a648) ) )
& ( ~ hskp54
| ( ndr1_0
& c3_1(a651)
& ~ c0_1(a651)
& c2_1(a651) ) )
& ( ~ hskp55
| ( ndr1_0
& ~ c2_1(a653)
& c3_1(a653)
& c1_1(a653) ) )
& ( ~ hskp56
| ( ndr1_0
& ~ c1_1(a658)
& c2_1(a658)
& c3_1(a658) ) )
& ( ~ hskp57
| ( ndr1_0
& ~ c0_1(a662)
& c1_1(a662)
& c2_1(a662) ) )
& ( ~ hskp58
| ( ndr1_0
& ~ c0_1(a663)
& ~ c1_1(a663)
& c3_1(a663) ) )
& ( ~ hskp59
| ( ndr1_0
& ~ c0_1(a665)
& c2_1(a665)
& c3_1(a665) ) )
& ( ~ hskp60
| ( ndr1_0
& c0_1(a669)
& ~ c2_1(a669)
& c1_1(a669) ) )
& ( ~ hskp61
| ( ndr1_0
& ~ c1_1(a670)
& ~ c0_1(a670)
& c2_1(a670) ) )
& ( ~ hskp62
| ( ndr1_0
& ~ c1_1(a671)
& c3_1(a671)
& c0_1(a671) ) )
& ( ~ hskp63
| ( ndr1_0
& ~ c0_1(a672)
& ~ c2_1(a672)
& c3_1(a672) ) )
& ( ~ hskp64
| ( ndr1_0
& c3_1(a673)
& ~ c0_1(a673)
& c1_1(a673) ) )
& ( ~ hskp65
| ( ndr1_0
& c2_1(a674)
& ~ c1_1(a674)
& c0_1(a674) ) )
& ( ~ hskp66
| ( ndr1_0
& c1_1(a675)
& ~ c2_1(a675)
& c3_1(a675) ) )
& ( ! [U] :
( ndr1_0
=> ( c2_1(U)
| ~ c3_1(U)
| ~ c0_1(U) ) )
| ! [V] :
( ndr1_0
=> ( ~ c2_1(V)
| c0_1(V)
| ~ c3_1(V) ) )
| ! [W] :
( ndr1_0
=> ( ~ c1_1(W)
| ~ c2_1(W)
| c3_1(W) ) ) )
& ( hskp0
| ! [X] :
( ndr1_0
=> ( c0_1(X)
| ~ c3_1(X)
| c1_1(X) ) )
| hskp1 )
& ( hskp33
| hskp34
| hskp2 )
& ( ! [Y] :
( ndr1_0
=> ( c2_1(Y)
| ~ c0_1(Y)
| c1_1(Y) ) )
| ! [Z] :
( ndr1_0
=> ( c0_1(Z)
| ~ c3_1(Z)
| ~ c2_1(Z) ) )
| ! [X1] :
( ndr1_0
=> ( ~ c0_1(X1)
| c1_1(X1)
| ~ c2_1(X1) ) ) )
& ( ! [X2] :
( ndr1_0
=> ( ~ c1_1(X2)
| c0_1(X2)
| ~ c2_1(X2) ) )
| ! [X3] :
( ndr1_0
=> ( c0_1(X3)
| c3_1(X3)
| ~ c2_1(X3) ) )
| ! [X4] :
( ndr1_0
=> ( c0_1(X4)
| ~ c1_1(X4)
| ~ c2_1(X4) ) ) )
& ( hskp35
| ! [X5] :
( ndr1_0
=> ( ~ c0_1(X5)
| ~ c2_1(X5)
| ~ c3_1(X5) ) )
| ! [X6] :
( ndr1_0
=> ( ~ c0_1(X6)
| c2_1(X6)
| ~ c3_1(X6) ) ) )
& ( hskp3
| hskp4
| hskp36 )
& ( hskp5
| ! [X7] :
( ndr1_0
=> ( ~ c0_1(X7)
| ~ c2_1(X7)
| ~ c3_1(X7) ) )
| hskp37 )
& ( ! [X8] :
( ndr1_0
=> ( ~ c2_1(X8)
| c0_1(X8)
| c1_1(X8) ) )
| ! [X9] :
( ndr1_0
=> ( ~ c2_1(X9)
| c1_1(X9)
| c3_1(X9) ) )
| ! [X10] :
( ndr1_0
=> ( c0_1(X10)
| c1_1(X10)
| c2_1(X10) ) ) )
& ( hskp38
| ! [X11] :
( ndr1_0
=> ( c2_1(X11)
| c1_1(X11)
| c0_1(X11) ) )
| ! [X12] :
( ndr1_0
=> ( ~ c3_1(X12)
| ~ c1_1(X12)
| c0_1(X12) ) ) )
& ( ! [X13] :
( ndr1_0
=> ( ~ c1_1(X13)
| ~ c3_1(X13)
| ~ c0_1(X13) ) )
| hskp6
| ! [X14] :
( ndr1_0
=> ( ~ c1_1(X14)
| ~ c0_1(X14)
| ~ c3_1(X14) ) ) )
& ( ! [X15] :
( ndr1_0
=> ( c2_1(X15)
| ~ c1_1(X15)
| ~ c0_1(X15) ) )
| hskp7
| hskp39 )
& ( hskp8
| ! [X16] :
( ndr1_0
=> ( c2_1(X16)
| c1_1(X16)
| c3_1(X16) ) )
| hskp9 )
& ( ! [X17] :
( ndr1_0
=> ( c2_1(X17)
| ~ c3_1(X17)
| ~ c0_1(X17) ) )
| ! [X18] :
( ndr1_0
=> ( ~ c3_1(X18)
| c1_1(X18)
| ~ c0_1(X18) ) )
| ! [X19] :
( ndr1_0
=> ( c3_1(X19)
| c0_1(X19)
| c2_1(X19) ) ) )
& ( ! [X20] :
( ndr1_0
=> ( c3_1(X20)
| ~ c1_1(X20)
| c2_1(X20) ) )
| hskp40
| hskp10 )
& ( ! [X21] :
( ndr1_0
=> ( ~ c3_1(X21)
| ~ c1_1(X21)
| ~ c2_1(X21) ) )
| hskp11
| ! [X22] :
( ndr1_0
=> ( c2_1(X22)
| c1_1(X22)
| c3_1(X22) ) ) )
& ( ! [X23] :
( ndr1_0
=> ( c3_1(X23)
| c2_1(X23)
| c0_1(X23) ) )
| ! [X24] :
( ndr1_0
=> ( ~ c3_1(X24)
| c2_1(X24)
| ~ c0_1(X24) ) )
| ! [X25] :
( ndr1_0
=> ( ~ c1_1(X25)
| ~ c2_1(X25)
| c0_1(X25) ) ) )
& ( ! [X26] :
( ndr1_0
=> ( ~ c1_1(X26)
| ~ c0_1(X26)
| c2_1(X26) ) )
| hskp41
| ! [X27] :
( ndr1_0
=> ( ~ c1_1(X27)
| ~ c3_1(X27)
| c2_1(X27) ) ) )
& ( hskp42
| ! [X28] :
( ndr1_0
=> ( c0_1(X28)
| c1_1(X28)
| ~ c3_1(X28) ) )
| ! [X29] :
( ndr1_0
=> ( ~ c0_1(X29)
| c2_1(X29)
| c1_1(X29) ) ) )
& ( ! [X30] :
( ndr1_0
=> ( c1_1(X30)
| c2_1(X30)
| ~ c3_1(X30) ) )
| ! [X31] :
( ndr1_0
=> ( ~ c2_1(X31)
| ~ c0_1(X31)
| c1_1(X31) ) )
| ! [X32] :
( ndr1_0
=> ( c0_1(X32)
| ~ c3_1(X32)
| ~ c2_1(X32) ) ) )
& ( ! [X33] :
( ndr1_0
=> ( ~ c2_1(X33)
| ~ c1_1(X33)
| c0_1(X33) ) )
| ! [X34] :
( ndr1_0
=> ( ~ c2_1(X34)
| c1_1(X34)
| c0_1(X34) ) )
| ! [X35] :
( ndr1_0
=> ( ~ c2_1(X35)
| ~ c3_1(X35)
| c1_1(X35) ) ) )
& ( ! [X36] :
( ndr1_0
=> ( ~ c2_1(X36)
| ~ c0_1(X36)
| ~ c1_1(X36) ) )
| ! [X37] :
( ndr1_0
=> ( ~ c2_1(X37)
| c3_1(X37)
| ~ c0_1(X37) ) )
| ! [X38] :
( ndr1_0
=> ( ~ c3_1(X38)
| ~ c0_1(X38)
| ~ c2_1(X38) ) ) )
& ( hskp43
| hskp12
| ! [X39] :
( ndr1_0
=> ( ~ c3_1(X39)
| ~ c1_1(X39)
| c2_1(X39) ) ) )
& ( hskp44
| hskp13
| ! [X40] :
( ndr1_0
=> ( c0_1(X40)
| ~ c2_1(X40)
| ~ c1_1(X40) ) ) )
& ( ! [X41] :
( ndr1_0
=> ( c0_1(X41)
| ~ c3_1(X41)
| ~ c2_1(X41) ) )
| ! [X42] :
( ndr1_0
=> ( c2_1(X42)
| c3_1(X42)
| ~ c1_1(X42) ) )
| hskp45 )
& ( hskp14
| hskp15
| ! [X43] :
( ndr1_0
=> ( ~ c2_1(X43)
| c1_1(X43)
| ~ c0_1(X43) ) ) )
& ( ! [X44] :
( ndr1_0
=> ( c3_1(X44)
| c1_1(X44)
| c0_1(X44) ) )
| ! [X45] :
( ndr1_0
=> ( ~ c3_1(X45)
| c0_1(X45)
| c1_1(X45) ) )
| ! [X46] :
( ndr1_0
=> ( ~ c3_1(X46)
| ~ c2_1(X46)
| c1_1(X46) ) ) )
& ( ! [X47] :
( ndr1_0
=> ( ~ c1_1(X47)
| c2_1(X47)
| c3_1(X47) ) )
| ! [X48] :
( ndr1_0
=> ( c1_1(X48)
| ~ c0_1(X48)
| ~ c3_1(X48) ) )
| hskp46 )
& ( ! [X49] :
( ndr1_0
=> ( c2_1(X49)
| c1_1(X49)
| c3_1(X49) ) )
| ! [X50] :
( ndr1_0
=> ( c2_1(X50)
| c3_1(X50)
| c1_1(X50) ) )
| ! [X51] :
( ndr1_0
=> ( ~ c2_1(X51)
| c3_1(X51)
| c0_1(X51) ) ) )
& ( hskp16
| hskp17
| hskp9 )
& ( hskp36
| ! [X52] :
( ndr1_0
=> ( ~ c0_1(X52)
| c1_1(X52)
| c2_1(X52) ) )
| ! [X53] :
( ndr1_0
=> ( ~ c0_1(X53)
| ~ c1_1(X53)
| ~ c3_1(X53) ) ) )
& ( hskp16
| ! [X54] :
( ndr1_0
=> ( ~ c3_1(X54)
| c2_1(X54)
| c0_1(X54) ) )
| ! [X55] :
( ndr1_0
=> ( ~ c2_1(X55)
| c3_1(X55)
| ~ c0_1(X55) ) ) )
& ( ! [X56] :
( ndr1_0
=> ( ~ c1_1(X56)
| ~ c2_1(X56)
| ~ c3_1(X56) ) )
| ! [X57] :
( ndr1_0
=> ( ~ c3_1(X57)
| ~ c2_1(X57)
| ~ c1_1(X57) ) )
| ! [X58] :
( ndr1_0
=> ( c1_1(X58)
| ~ c2_1(X58)
| ~ c0_1(X58) ) ) )
& ( hskp18
| hskp9
| hskp19 )
& ( ! [X59] :
( ndr1_0
=> ( ~ c2_1(X59)
| c1_1(X59)
| ~ c3_1(X59) ) )
| ! [X60] :
( ndr1_0
=> ( c3_1(X60)
| c2_1(X60)
| ~ c0_1(X60) ) )
| hskp20 )
& ( hskp47
| ! [X61] :
( ndr1_0
=> ( c1_1(X61)
| c3_1(X61)
| ~ c0_1(X61) ) )
| hskp21 )
& ( ! [X62] :
( ndr1_0
=> ( c2_1(X62)
| c0_1(X62)
| c3_1(X62) ) )
| ! [X63] :
( ndr1_0
=> ( c3_1(X63)
| c1_1(X63)
| c0_1(X63) ) )
| ! [X64] :
( ndr1_0
=> ( c3_1(X64)
| c0_1(X64)
| c2_1(X64) ) ) )
& ( hskp48
| ! [X65] :
( ndr1_0
=> ( c1_1(X65)
| c3_1(X65)
| ~ c0_1(X65) ) )
| hskp49 )
& ( ! [X66] :
( ndr1_0
=> ( c3_1(X66)
| c2_1(X66)
| c1_1(X66) ) )
| hskp50
| hskp22 )
& ( ! [X67] :
( ndr1_0
=> ( c1_1(X67)
| ~ c2_1(X67)
| ~ c3_1(X67) ) )
| hskp23
| hskp24 )
& ( ! [X68] :
( ndr1_0
=> ( c1_1(X68)
| c0_1(X68)
| c3_1(X68) ) )
| hskp51
| ! [X69] :
( ndr1_0
=> ( ~ c1_1(X69)
| c0_1(X69)
| ~ c3_1(X69) ) ) )
& ( ! [X70] :
( ndr1_0
=> ( ~ c0_1(X70)
| ~ c1_1(X70)
| c2_1(X70) ) )
| ! [X71] :
( ndr1_0
=> ( c2_1(X71)
| c1_1(X71)
| ~ c3_1(X71) ) )
| hskp5 )
& ( hskp25
| ! [X72] :
( ndr1_0
=> ( c3_1(X72)
| c2_1(X72)
| ~ c0_1(X72) ) )
| hskp52 )
& ( hskp53
| hskp17
| ! [X73] :
( ndr1_0
=> ( c0_1(X73)
| c1_1(X73)
| ~ c3_1(X73) ) ) )
& ( hskp37
| hskp54
| ! [X74] :
( ndr1_0
=> ( c3_1(X74)
| ~ c2_1(X74)
| c0_1(X74) ) ) )
& ( hskp26
| hskp55
| ! [X75] :
( ndr1_0
=> ( c1_1(X75)
| ~ c0_1(X75)
| c2_1(X75) ) ) )
& ( hskp27
| hskp40
| hskp28 )
& ( hskp55
| ! [X76] :
( ndr1_0
=> ( c2_1(X76)
| ~ c3_1(X76)
| c1_1(X76) ) )
| ! [X77] :
( ndr1_0
=> ( ~ c2_1(X77)
| c3_1(X77)
| c0_1(X77) ) ) )
& ( ! [X78] :
( ndr1_0
=> ( c2_1(X78)
| c1_1(X78)
| ~ c3_1(X78) ) )
| hskp56
| ! [X79] :
( ndr1_0
=> ( c2_1(X79)
| ~ c1_1(X79)
| c3_1(X79) ) ) )
& ( ! [X80] :
( ndr1_0
=> ( c0_1(X80)
| c2_1(X80)
| ~ c3_1(X80) ) )
| hskp3
| hskp29 )
& ( hskp42
| ! [X81] :
( ndr1_0
=> ( ~ c3_1(X81)
| c0_1(X81)
| c1_1(X81) ) )
| ! [X82] :
( ndr1_0
=> ( c3_1(X82)
| c0_1(X82)
| c1_1(X82) ) ) )
& ( hskp57
| ! [X83] :
( ndr1_0
=> ( c1_1(X83)
| ~ c3_1(X83)
| ~ c0_1(X83) ) )
| ! [X84] :
( ndr1_0
=> ( ~ c0_1(X84)
| ~ c1_1(X84)
| ~ c3_1(X84) ) ) )
& ( ! [X85] :
( ndr1_0
=> ( c2_1(X85)
| ~ c3_1(X85)
| ~ c0_1(X85) ) )
| hskp58
| hskp41 )
& ( hskp59
| hskp30 )
& ( ! [X86] :
( ndr1_0
=> ( ~ c2_1(X86)
| ~ c1_1(X86)
| c0_1(X86) ) )
| hskp31
| ! [X87] :
( ndr1_0
=> ( ~ c2_1(X87)
| c1_1(X87)
| ~ c0_1(X87) ) ) )
& ( hskp33
| hskp60
| hskp61 )
& ( hskp62
| hskp63
| ! [X88] :
( ndr1_0
=> ( c1_1(X88)
| c3_1(X88)
| c2_1(X88) ) ) )
& ( hskp64
| hskp65
| hskp66 )
& ( ! [X89] :
( ndr1_0
=> ( ~ c3_1(X89)
| ~ c0_1(X89)
| c1_1(X89) ) )
| hskp55
| ! [X90] :
( ndr1_0
=> ( c1_1(X90)
| c0_1(X90)
| ~ c3_1(X90) ) ) )
& ( hskp32
| hskp30
| ! [X91] :
( ndr1_0
=> ( c1_1(X91)
| ~ c0_1(X91)
| ~ c2_1(X91) ) ) ) ) ).
%--------------------------------------------------------------------------