TPTP Problem File: SYN439+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN439+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=48, K=3, D=1, P=0, Index=090
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-48-3-1-090.dfg [Wei97]
% Status : Theorem
% Rating : 0.00 v7.0.0, 0.25 v6.4.0, 0.00 v6.1.0, 0.33 v6.0.0, 0.00 v5.5.0, 0.44 v5.3.0, 0.45 v5.2.0, 0.50 v4.1.0, 0.67 v4.0.1, 0.68 v4.0.0, 0.70 v3.7.0, 0.67 v3.5.0, 0.50 v3.3.0, 0.56 v3.2.0, 0.67 v2.7.0, 0.33 v2.5.0, 0.67 v2.4.0, 0.67 v2.2.1, 1.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 655 ( 0 equ)
% Maximal formula atoms : 655 ( 655 avg)
% Number of connectives : 922 ( 268 ~; 313 |; 259 &)
% ( 0 <=>; 82 =>; 0 <=; 0 <~>)
% Maximal formula depth : 109 ( 109 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 58 ( 58 usr; 54 prp; 0-1 aty)
% Number of functors : 53 ( 53 usr; 53 con; 0-0 aty)
% Number of variables : 82 ( 82 !; 0 ?)
% SPC : FOF_THM_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& c1_1(a535)
& c0_1(a535)
& ~ c2_1(a535) ) )
& ( ~ hskp1
| ( ndr1_0
& ~ c2_1(a539)
& ~ c1_1(a539)
& ~ c0_1(a539) ) )
& ( ~ hskp2
| ( ndr1_0
& c2_1(a540)
& c1_1(a540)
& ~ c3_1(a540) ) )
& ( ~ hskp3
| ( ndr1_0
& ~ c1_1(a543)
& ~ c0_1(a543)
& ~ c3_1(a543) ) )
& ( ~ hskp4
| ( ndr1_0
& ~ c2_1(a545)
& c1_1(a545)
& ~ c0_1(a545) ) )
& ( ~ hskp5
| ( ndr1_0
& ~ c3_1(a546)
& c2_1(a546)
& ~ c1_1(a546) ) )
& ( ~ hskp6
| ( ndr1_0
& ~ c2_1(a548)
& c3_1(a548)
& ~ c0_1(a548) ) )
& ( ~ hskp7
| ( ndr1_0
& c0_1(a550)
& c3_1(a550)
& ~ c1_1(a550) ) )
& ( ~ hskp8
| ( ndr1_0
& ~ c3_1(a552)
& ~ c1_1(a552)
& ~ c2_1(a552) ) )
& ( ~ hskp9
| ( ndr1_0
& ~ c0_1(a554)
& ~ c2_1(a554)
& ~ c1_1(a554) ) )
& ( ~ hskp10
| ( ndr1_0
& ~ c1_1(a558)
& c3_1(a558)
& ~ c0_1(a558) ) )
& ( ~ hskp11
| ( ndr1_0
& c1_1(a560)
& ~ c3_1(a560)
& ~ c0_1(a560) ) )
& ( ~ hskp12
| ( ndr1_0
& c3_1(a563)
& ~ c0_1(a563)
& ~ c2_1(a563) ) )
& ( ~ hskp13
| ( ndr1_0
& c3_1(a565)
& c2_1(a565)
& ~ c1_1(a565) ) )
& ( ~ hskp14
| ( ndr1_0
& c0_1(a567)
& ~ c1_1(a567)
& ~ c3_1(a567) ) )
& ( ~ hskp15
| ( ndr1_0
& ~ c0_1(a569)
& ~ c1_1(a569)
& ~ c2_1(a569) ) )
& ( ~ hskp16
| ( ndr1_0
& c3_1(a570)
& c1_1(a570)
& ~ c0_1(a570) ) )
& ( ~ hskp17
| ( ndr1_0
& c0_1(a571)
& c3_1(a571)
& ~ c2_1(a571) ) )
& ( ~ hskp18
| ( ndr1_0
& ~ c3_1(a572)
& c0_1(a572)
& ~ c1_1(a572) ) )
& ( ~ hskp19
| ( ndr1_0
& ~ c2_1(a573)
& ~ c0_1(a573)
& ~ c1_1(a573) ) )
& ( ~ hskp20
| ( ndr1_0
& ~ c2_1(a575)
& ~ c0_1(a575)
& ~ c3_1(a575) ) )
& ( ~ hskp21
| ( ndr1_0
& c1_1(a576)
& ~ c0_1(a576)
& ~ c3_1(a576) ) )
& ( ~ hskp22
| ( ndr1_0
& ~ c3_1(a577)
& c1_1(a577)
& ~ c0_1(a577) ) )
& ( ~ hskp23
| ( ndr1_0
& c3_1(a578)
& ~ c0_1(a578)
& ~ c1_1(a578) ) )
& ( ~ hskp24
| ( ndr1_0
& c2_1(a581)
& ~ c1_1(a581)
& ~ c3_1(a581) ) )
& ( ~ hskp25
| ( ndr1_0
& ~ c3_1(a582)
& ~ c2_1(a582)
& ~ c1_1(a582) ) )
& ( ~ hskp26
| ( ndr1_0
& c0_1(a584)
& c1_1(a584)
& ~ c3_1(a584) ) )
& ( ~ hskp27
| ( ndr1_0
& ~ c0_1(a586)
& c1_1(a586)
& ~ c3_1(a586) ) )
& ( ~ hskp28
| ( ndr1_0
& c2_1(a589)
& c3_1(a589)
& ~ c0_1(a589) ) )
& ( ~ hskp29
| ( ndr1_0
& ~ c3_1(a590)
& ~ c0_1(a590)
& ~ c1_1(a590) ) )
& ( ~ hskp30
| ( ndr1_0
& c1_1(a591)
& ~ c2_1(a591)
& ~ c0_1(a591) ) )
& ( ~ hskp31
| ( ndr1_0
& ~ c0_1(a594)
& ~ c3_1(a594)
& ~ c1_1(a594) ) )
& ( ~ hskp32
| ( ndr1_0
& c0_1(a596)
& ~ c3_1(a596)
& ~ c2_1(a596) ) )
& ( ~ hskp33
| ( ndr1_0
& c1_1(a536)
& c2_1(a536)
& c0_1(a536) ) )
& ( ~ hskp34
| ( ndr1_0
& c0_1(a537)
& ~ c1_1(a537)
& c3_1(a537) ) )
& ( ~ hskp35
| ( ndr1_0
& c2_1(a538)
& c1_1(a538)
& c3_1(a538) ) )
& ( ~ hskp36
| ( ndr1_0
& c0_1(a541)
& c1_1(a541)
& c2_1(a541) ) )
& ( ~ hskp37
| ( ndr1_0
& ~ c2_1(a544)
& ~ c3_1(a544)
& c1_1(a544) ) )
& ( ~ hskp38
| ( ndr1_0
& c2_1(a547)
& c1_1(a547)
& c0_1(a547) ) )
& ( ~ hskp39
| ( ndr1_0
& c3_1(a549)
& c2_1(a549)
& c1_1(a549) ) )
& ( ~ hskp40
| ( ndr1_0
& c3_1(a551)
& ~ c0_1(a551)
& c2_1(a551) ) )
& ( ~ hskp41
| ( ndr1_0
& ~ c2_1(a555)
& c3_1(a555)
& c0_1(a555) ) )
& ( ~ hskp42
| ( ndr1_0
& ~ c2_1(a556)
& c1_1(a556)
& c3_1(a556) ) )
& ( ~ hskp43
| ( ndr1_0
& c3_1(a557)
& ~ c1_1(a557)
& c0_1(a557) ) )
& ( ~ hskp44
| ( ndr1_0
& ~ c3_1(a559)
& c0_1(a559)
& c2_1(a559) ) )
& ( ~ hskp45
| ( ndr1_0
& ~ c3_1(a561)
& ~ c2_1(a561)
& c0_1(a561) ) )
& ( ~ hskp46
| ( ndr1_0
& ~ c3_1(a562)
& ~ c0_1(a562)
& c1_1(a562) ) )
& ( ~ hskp47
| ( ndr1_0
& ~ c2_1(a564)
& c0_1(a564)
& c1_1(a564) ) )
& ( ~ hskp48
| ( ndr1_0
& ~ c3_1(a566)
& ~ c2_1(a566)
& c1_1(a566) ) )
& ( ~ hskp49
| ( ndr1_0
& ~ c0_1(a568)
& ~ c1_1(a568)
& c2_1(a568) ) )
& ( ~ hskp50
| ( ndr1_0
& ~ c3_1(a574)
& c0_1(a574)
& c1_1(a574) ) )
& ( ~ hskp51
| ( ndr1_0
& ~ c2_1(a583)
& c0_1(a583)
& c3_1(a583) ) )
& ( ~ hskp52
| ( ndr1_0
& ~ c0_1(a595)
& c2_1(a595)
& c1_1(a595) ) )
& ( ! [U] :
( ndr1_0
=> ( c1_1(U)
| c2_1(U)
| c3_1(U) ) )
| ! [V] :
( ndr1_0
=> ( ~ c2_1(V)
| ~ c1_1(V)
| ~ c0_1(V) ) )
| hskp0 )
& ( ! [W] :
( ndr1_0
=> ( c2_1(W)
| ~ c1_1(W)
| ~ c0_1(W) ) )
| ! [X] :
( ndr1_0
=> ( c2_1(X)
| c1_1(X)
| ~ c3_1(X) ) )
| ! [Y] :
( ndr1_0
=> ( ~ c0_1(Y)
| ~ c1_1(Y)
| ~ c2_1(Y) ) ) )
& ( hskp33
| ! [Z] :
( ndr1_0
=> ( c2_1(Z)
| c3_1(Z)
| c0_1(Z) ) )
| ! [X1] :
( ndr1_0
=> ( c3_1(X1)
| ~ c1_1(X1)
| ~ c0_1(X1) ) ) )
& ( hskp34
| ! [X2] :
( ndr1_0
=> ( ~ c1_1(X2)
| ~ c2_1(X2)
| ~ c3_1(X2) ) )
| ! [X3] :
( ndr1_0
=> ( c1_1(X3)
| c2_1(X3)
| c3_1(X3) ) ) )
& ( hskp35
| ! [X4] :
( ndr1_0
=> ( c3_1(X4)
| ~ c2_1(X4)
| ~ c1_1(X4) ) )
| ! [X5] :
( ndr1_0
=> ( ~ c0_1(X5)
| c1_1(X5)
| c2_1(X5) ) ) )
& ( ! [X6] :
( ndr1_0
=> ( ~ c3_1(X6)
| ~ c1_1(X6)
| ~ c0_1(X6) ) )
| hskp1
| hskp2 )
& ( hskp36
| hskp34
| hskp3 )
& ( ! [X7] :
( ndr1_0
=> ( ~ c0_1(X7)
| c1_1(X7)
| c3_1(X7) ) )
| hskp37
| ! [X8] :
( ndr1_0
=> ( c1_1(X8)
| ~ c2_1(X8)
| ~ c0_1(X8) ) ) )
& ( ! [X9] :
( ndr1_0
=> ( c3_1(X9)
| c0_1(X9)
| ~ c1_1(X9) ) )
| hskp4
| ! [X10] :
( ndr1_0
=> ( ~ c2_1(X10)
| ~ c3_1(X10)
| ~ c1_1(X10) ) ) )
& ( ! [X11] :
( ndr1_0
=> ( c3_1(X11)
| ~ c2_1(X11)
| ~ c1_1(X11) ) )
| ! [X12] :
( ndr1_0
=> ( c1_1(X12)
| ~ c3_1(X12)
| c2_1(X12) ) )
| hskp5 )
& ( ! [X13] :
( ndr1_0
=> ( c3_1(X13)
| c1_1(X13)
| c2_1(X13) ) )
| hskp38
| ! [X14] :
( ndr1_0
=> ( c0_1(X14)
| c2_1(X14)
| ~ c3_1(X14) ) ) )
& ( ! [X15] :
( ndr1_0
=> ( c0_1(X15)
| c1_1(X15)
| c2_1(X15) ) )
| ! [X16] :
( ndr1_0
=> ( ~ c1_1(X16)
| ~ c3_1(X16)
| c0_1(X16) ) )
| hskp6 )
& ( ! [X17] :
( ndr1_0
=> ( c3_1(X17)
| ~ c1_1(X17)
| c0_1(X17) ) )
| ! [X18] :
( ndr1_0
=> ( c2_1(X18)
| ~ c3_1(X18)
| ~ c1_1(X18) ) )
| hskp39 )
& ( ! [X19] :
( ndr1_0
=> ( ~ c2_1(X19)
| c1_1(X19)
| ~ c0_1(X19) ) )
| hskp7
| hskp40 )
& ( ! [X20] :
( ndr1_0
=> ( c0_1(X20)
| ~ c2_1(X20)
| c1_1(X20) ) )
| ! [X21] :
( ndr1_0
=> ( c1_1(X21)
| ~ c0_1(X21)
| ~ c3_1(X21) ) )
| hskp8 )
& ( ! [X22] :
( ndr1_0
=> ( ~ c2_1(X22)
| c1_1(X22)
| ~ c3_1(X22) ) )
| ! [X23] :
( ndr1_0
=> ( ~ c1_1(X23)
| ~ c2_1(X23)
| ~ c3_1(X23) ) )
| hskp38 )
& ( ! [X24] :
( ndr1_0
=> ( c2_1(X24)
| ~ c1_1(X24)
| ~ c0_1(X24) ) )
| ! [X25] :
( ndr1_0
=> ( c0_1(X25)
| ~ c3_1(X25)
| c1_1(X25) ) )
| ! [X26] :
( ndr1_0
=> ( c0_1(X26)
| ~ c2_1(X26)
| c3_1(X26) ) ) )
& ( ! [X27] :
( ndr1_0
=> ( ~ c1_1(X27)
| c0_1(X27)
| ~ c3_1(X27) ) )
| hskp9
| hskp41 )
& ( ! [X28] :
( ndr1_0
=> ( c1_1(X28)
| ~ c2_1(X28)
| ~ c3_1(X28) ) )
| ! [X29] :
( ndr1_0
=> ( c2_1(X29)
| c3_1(X29)
| c1_1(X29) ) )
| ! [X30] :
( ndr1_0
=> ( ~ c1_1(X30)
| c2_1(X30)
| ~ c3_1(X30) ) ) )
& ( hskp42
| ! [X31] :
( ndr1_0
=> ( ~ c2_1(X31)
| ~ c0_1(X31)
| ~ c1_1(X31) ) )
| ! [X32] :
( ndr1_0
=> ( ~ c1_1(X32)
| ~ c3_1(X32)
| c2_1(X32) ) ) )
& ( ! [X33] :
( ndr1_0
=> ( c0_1(X33)
| ~ c2_1(X33)
| ~ c1_1(X33) ) )
| hskp43
| ! [X34] :
( ndr1_0
=> ( c1_1(X34)
| c2_1(X34)
| ~ c0_1(X34) ) ) )
& ( hskp10
| ! [X35] :
( ndr1_0
=> ( ~ c2_1(X35)
| c0_1(X35)
| ~ c1_1(X35) ) )
| ! [X36] :
( ndr1_0
=> ( ~ c0_1(X36)
| ~ c3_1(X36)
| ~ c2_1(X36) ) ) )
& ( hskp44
| hskp11
| ! [X37] :
( ndr1_0
=> ( c0_1(X37)
| ~ c3_1(X37)
| c2_1(X37) ) ) )
& ( ! [X38] :
( ndr1_0
=> ( c2_1(X38)
| c0_1(X38)
| c3_1(X38) ) )
| ! [X39] :
( ndr1_0
=> ( ~ c0_1(X39)
| c2_1(X39)
| ~ c1_1(X39) ) )
| hskp45 )
& ( ! [X40] :
( ndr1_0
=> ( ~ c2_1(X40)
| c0_1(X40)
| ~ c1_1(X40) ) )
| hskp46
| ! [X41] :
( ndr1_0
=> ( ~ c2_1(X41)
| ~ c0_1(X41)
| c1_1(X41) ) ) )
& ( hskp12
| ! [X42] :
( ndr1_0
=> ( c1_1(X42)
| c2_1(X42)
| c3_1(X42) ) )
| ! [X43] :
( ndr1_0
=> ( ~ c3_1(X43)
| ~ c1_1(X43)
| c2_1(X43) ) ) )
& ( ! [X44] :
( ndr1_0
=> ( c0_1(X44)
| ~ c2_1(X44)
| ~ c3_1(X44) ) )
| ! [X45] :
( ndr1_0
=> ( ~ c2_1(X45)
| ~ c1_1(X45)
| c3_1(X45) ) )
| hskp47 )
& ( hskp13
| hskp48
| ! [X46] :
( ndr1_0
=> ( ~ c2_1(X46)
| c1_1(X46)
| c0_1(X46) ) ) )
& ( hskp14
| ! [X47] :
( ndr1_0
=> ( c3_1(X47)
| c2_1(X47)
| c1_1(X47) ) )
| ! [X48] :
( ndr1_0
=> ( c2_1(X48)
| c0_1(X48)
| ~ c1_1(X48) ) ) )
& ( ! [X49] :
( ndr1_0
=> ( c2_1(X49)
| ~ c0_1(X49)
| ~ c3_1(X49) ) )
| hskp49
| ! [X50] :
( ndr1_0
=> ( c2_1(X50)
| c3_1(X50)
| ~ c0_1(X50) ) ) )
& ( ! [X51] :
( ndr1_0
=> ( ~ c2_1(X51)
| ~ c3_1(X51)
| c1_1(X51) ) )
| ! [X52] :
( ndr1_0
=> ( c3_1(X52)
| ~ c1_1(X52)
| c2_1(X52) ) )
| hskp15 )
& ( hskp16
| hskp17
| hskp18 )
& ( ! [X53] :
( ndr1_0
=> ( c2_1(X53)
| ~ c0_1(X53)
| c1_1(X53) ) )
| hskp19
| hskp50 )
& ( ! [X54] :
( ndr1_0
=> ( c2_1(X54)
| ~ c3_1(X54)
| ~ c1_1(X54) ) )
| hskp20
| hskp21 )
& ( ! [X55] :
( ndr1_0
=> ( ~ c1_1(X55)
| c3_1(X55)
| ~ c0_1(X55) ) )
| hskp22
| hskp23 )
& ( ! [X56] :
( ndr1_0
=> ( ~ c1_1(X56)
| c3_1(X56)
| c0_1(X56) ) )
| ! [X57] :
( ndr1_0
=> ( ~ c1_1(X57)
| ~ c0_1(X57)
| ~ c2_1(X57) ) )
| hskp34 )
& ( hskp39
| hskp24
| ! [X58] :
( ndr1_0
=> ( c3_1(X58)
| c2_1(X58)
| ~ c0_1(X58) ) ) )
& ( ! [X59] :
( ndr1_0
=> ( ~ c1_1(X59)
| ~ c3_1(X59)
| c2_1(X59) ) )
| hskp25
| ! [X60] :
( ndr1_0
=> ( ~ c2_1(X60)
| ~ c3_1(X60)
| ~ c1_1(X60) ) ) )
& ( ! [X61] :
( ndr1_0
=> ( ~ c0_1(X61)
| ~ c3_1(X61)
| c1_1(X61) ) )
| ! [X62] :
( ndr1_0
=> ( c1_1(X62)
| ~ c2_1(X62)
| c3_1(X62) ) )
| ! [X63] :
( ndr1_0
=> ( ~ c0_1(X63)
| c2_1(X63)
| ~ c3_1(X63) ) ) )
& ( ! [X64] :
( ndr1_0
=> ( c3_1(X64)
| c2_1(X64)
| c1_1(X64) ) )
| ! [X65] :
( ndr1_0
=> ( ~ c0_1(X65)
| c1_1(X65)
| ~ c3_1(X65) ) )
| hskp51 )
& ( ! [X66] :
( ndr1_0
=> ( ~ c3_1(X66)
| c0_1(X66)
| c1_1(X66) ) )
| ! [X67] :
( ndr1_0
=> ( c0_1(X67)
| c3_1(X67)
| ~ c1_1(X67) ) )
| hskp26 )
& ( hskp6
| hskp27
| hskp4 )
& ( hskp46
| ! [X68] :
( ndr1_0
=> ( ~ c3_1(X68)
| c2_1(X68)
| c0_1(X68) ) )
| ! [X69] :
( ndr1_0
=> ( c2_1(X69)
| ~ c1_1(X69)
| ~ c3_1(X69) ) ) )
& ( ! [X70] :
( ndr1_0
=> ( c2_1(X70)
| c0_1(X70)
| c1_1(X70) ) )
| ! [X71] :
( ndr1_0
=> ( c1_1(X71)
| c0_1(X71)
| c2_1(X71) ) )
| hskp28 )
& ( hskp29
| ! [X72] :
( ndr1_0
=> ( c2_1(X72)
| ~ c3_1(X72)
| c1_1(X72) ) )
| hskp30 )
& ( ! [X73] :
( ndr1_0
=> ( ~ c2_1(X73)
| c3_1(X73)
| c0_1(X73) ) )
| ! [X74] :
( ndr1_0
=> ( ~ c1_1(X74)
| ~ c2_1(X74)
| ~ c3_1(X74) ) )
| hskp46 )
& ( hskp40
| hskp31
| hskp52 )
& ( ! [X75] :
( ndr1_0
=> ( ~ c1_1(X75)
| c3_1(X75)
| ~ c2_1(X75) ) )
| hskp32
| ! [X76] :
( ndr1_0
=> ( c3_1(X76)
| ~ c1_1(X76)
| ~ c0_1(X76) ) ) ) ) ).
%--------------------------------------------------------------------------