TPTP Problem File: SYN437+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN437+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=48, K=3, D=1, P=0, Index=082
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-48-3-1-082.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v5.5.0, 0.30 v5.4.0, 0.20 v5.3.0, 0.25 v5.0.0, 0.00 v4.1.0, 0.50 v4.0.1, 0.33 v3.7.0, 0.00 v3.5.0, 0.25 v3.4.0, 0.17 v3.2.0, 0.25 v3.1.0, 0.17 v2.7.0, 0.33 v2.6.0, 0.00 v2.4.0, 0.67 v2.2.1, 1.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 644 ( 0 equ)
% Maximal formula atoms : 644 ( 644 avg)
% Number of connectives : 909 ( 266 ~; 308 |; 255 &)
% ( 0 <=>; 80 =>; 0 <=; 0 <~>)
% Maximal formula depth : 108 ( 108 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 57 ( 57 usr; 53 prp; 0-1 aty)
% Number of functors : 52 ( 52 usr; 52 con; 0-0 aty)
% Number of variables : 80 ( 80 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& ~ c3_1(a402)
& ~ c2_1(a402)
& ~ c1_1(a402) ) )
& ( ~ hskp1
| ( ndr1_0
& c2_1(a403)
& c3_1(a403)
& ~ c1_1(a403) ) )
& ( ~ hskp2
| ( ndr1_0
& c1_1(a405)
& c0_1(a405)
& ~ c2_1(a405) ) )
& ( ~ hskp3
| ( ndr1_0
& ~ c1_1(a407)
& ~ c0_1(a407)
& ~ c3_1(a407) ) )
& ( ~ hskp4
| ( ndr1_0
& ~ c2_1(a411)
& ~ c1_1(a411)
& ~ c3_1(a411) ) )
& ( ~ hskp5
| ( ndr1_0
& ~ c1_1(a413)
& c0_1(a413)
& ~ c3_1(a413) ) )
& ( ~ hskp6
| ( ndr1_0
& c2_1(a416)
& ~ c3_1(a416)
& ~ c1_1(a416) ) )
& ( ~ hskp7
| ( ndr1_0
& ~ c3_1(a418)
& c1_1(a418)
& ~ c2_1(a418) ) )
& ( ~ hskp8
| ( ndr1_0
& ~ c2_1(a420)
& c1_1(a420)
& ~ c3_1(a420) ) )
& ( ~ hskp9
| ( ndr1_0
& c3_1(a421)
& c2_1(a421)
& ~ c0_1(a421) ) )
& ( ~ hskp10
| ( ndr1_0
& ~ c1_1(a422)
& c0_1(a422)
& ~ c2_1(a422) ) )
& ( ~ hskp11
| ( ndr1_0
& ~ c0_1(a428)
& ~ c1_1(a428)
& ~ c2_1(a428) ) )
& ( ~ hskp12
| ( ndr1_0
& c1_1(a430)
& c3_1(a430)
& ~ c2_1(a430) ) )
& ( ~ hskp13
| ( ndr1_0
& ~ c2_1(a433)
& ~ c3_1(a433)
& ~ c0_1(a433) ) )
& ( ~ hskp14
| ( ndr1_0
& ~ c3_1(a437)
& ~ c1_1(a437)
& ~ c2_1(a437) ) )
& ( ~ hskp15
| ( ndr1_0
& c2_1(a440)
& c0_1(a440)
& ~ c3_1(a440) ) )
& ( ~ hskp16
| ( ndr1_0
& ~ c0_1(a441)
& c1_1(a441)
& ~ c2_1(a441) ) )
& ( ~ hskp17
| ( ndr1_0
& c2_1(a443)
& ~ c1_1(a443)
& ~ c0_1(a443) ) )
& ( ~ hskp18
| ( ndr1_0
& ~ c2_1(a444)
& c0_1(a444)
& ~ c1_1(a444) ) )
& ( ~ hskp19
| ( ndr1_0
& c2_1(a445)
& c0_1(a445)
& ~ c1_1(a445) ) )
& ( ~ hskp20
| ( ndr1_0
& ~ c0_1(a448)
& ~ c1_1(a448)
& ~ c3_1(a448) ) )
& ( ~ hskp21
| ( ndr1_0
& ~ c0_1(a450)
& c3_1(a450)
& ~ c2_1(a450) ) )
& ( ~ hskp22
| ( ndr1_0
& ~ c0_1(a451)
& ~ c3_1(a451)
& ~ c2_1(a451) ) )
& ( ~ hskp23
| ( ndr1_0
& ~ c1_1(a452)
& c3_1(a452)
& ~ c0_1(a452) ) )
& ( ~ hskp24
| ( ndr1_0
& c0_1(a454)
& ~ c3_1(a454)
& ~ c2_1(a454) ) )
& ( ~ hskp25
| ( ndr1_0
& c1_1(a460)
& c2_1(a460)
& ~ c0_1(a460) ) )
& ( ~ hskp26
| ( ndr1_0
& c1_1(a461)
& c3_1(a461)
& ~ c0_1(a461) ) )
& ( ~ hskp27
| ( ndr1_0
& ~ c3_1(a404)
& ~ c2_1(a404)
& c1_1(a404) ) )
& ( ~ hskp28
| ( ndr1_0
& ~ c0_1(a408)
& ~ c3_1(a408)
& c2_1(a408) ) )
& ( ~ hskp29
| ( ndr1_0
& ~ c1_1(a409)
& ~ c3_1(a409)
& c0_1(a409) ) )
& ( ~ hskp30
| ( ndr1_0
& ~ c0_1(a410)
& ~ c2_1(a410)
& c1_1(a410) ) )
& ( ~ hskp31
| ( ndr1_0
& ~ c3_1(a412)
& ~ c2_1(a412)
& c0_1(a412) ) )
& ( ~ hskp32
| ( ndr1_0
& c3_1(a414)
& ~ c0_1(a414)
& c1_1(a414) ) )
& ( ~ hskp33
| ( ndr1_0
& c1_1(a415)
& ~ c3_1(a415)
& c0_1(a415) ) )
& ( ~ hskp34
| ( ndr1_0
& c1_1(a417)
& ~ c0_1(a417)
& c2_1(a417) ) )
& ( ~ hskp35
| ( ndr1_0
& c2_1(a419)
& c1_1(a419)
& c3_1(a419) ) )
& ( ~ hskp36
| ( ndr1_0
& ~ c0_1(a424)
& c3_1(a424)
& c2_1(a424) ) )
& ( ~ hskp37
| ( ndr1_0
& ~ c1_1(a427)
& ~ c2_1(a427)
& c3_1(a427) ) )
& ( ~ hskp38
| ( ndr1_0
& ~ c0_1(a429)
& ~ c3_1(a429)
& c1_1(a429) ) )
& ( ~ hskp39
| ( ndr1_0
& c3_1(a431)
& c1_1(a431)
& c2_1(a431) ) )
& ( ~ hskp40
| ( ndr1_0
& ~ c3_1(a432)
& c1_1(a432)
& c2_1(a432) ) )
& ( ~ hskp41
| ( ndr1_0
& c0_1(a434)
& c1_1(a434)
& c3_1(a434) ) )
& ( ~ hskp42
| ( ndr1_0
& c2_1(a435)
& ~ c3_1(a435)
& c0_1(a435) ) )
& ( ~ hskp43
| ( ndr1_0
& c2_1(a436)
& ~ c0_1(a436)
& c3_1(a436) ) )
& ( ~ hskp44
| ( ndr1_0
& ~ c0_1(a438)
& c1_1(a438)
& c2_1(a438) ) )
& ( ~ hskp45
| ( ndr1_0
& c3_1(a439)
& ~ c2_1(a439)
& c0_1(a439) ) )
& ( ~ hskp46
| ( ndr1_0
& ~ c2_1(a446)
& ~ c3_1(a446)
& c1_1(a446) ) )
& ( ~ hskp47
| ( ndr1_0
& c0_1(a449)
& ~ c3_1(a449)
& c1_1(a449) ) )
& ( ~ hskp48
| ( ndr1_0
& c3_1(a455)
& c2_1(a455)
& c1_1(a455) ) )
& ( ~ hskp49
| ( ndr1_0
& ~ c2_1(a459)
& ~ c1_1(a459)
& c0_1(a459) ) )
& ( ~ hskp50
| ( ndr1_0
& ~ c1_1(a462)
& c3_1(a462)
& c0_1(a462) ) )
& ( ~ hskp51
| ( ndr1_0
& c1_1(a464)
& ~ c2_1(a464)
& c0_1(a464) ) )
& ( ! [U] :
( ndr1_0
=> ( ~ c2_1(U)
| c0_1(U)
| ~ c3_1(U) ) )
| hskp0
| ! [V] :
( ndr1_0
=> ( c1_1(V)
| c2_1(V)
| ~ c0_1(V) ) ) )
& ( ! [W] :
( ndr1_0
=> ( ~ c1_1(W)
| ~ c0_1(W)
| ~ c2_1(W) ) )
| ! [X] :
( ndr1_0
=> ( c1_1(X)
| ~ c3_1(X)
| ~ c2_1(X) ) )
| hskp1 )
& ( hskp27
| hskp2
| ! [Y] :
( ndr1_0
=> ( ~ c2_1(Y)
| ~ c1_1(Y)
| c3_1(Y) ) ) )
& ( hskp1
| hskp3
| hskp28 )
& ( hskp29
| ! [Z] :
( ndr1_0
=> ( c0_1(Z)
| ~ c3_1(Z)
| c1_1(Z) ) )
| hskp30 )
& ( ! [X1] :
( ndr1_0
=> ( c3_1(X1)
| c1_1(X1)
| ~ c2_1(X1) ) )
| ! [X2] :
( ndr1_0
=> ( c1_1(X2)
| ~ c3_1(X2)
| c2_1(X2) ) )
| hskp4 )
& ( ! [X3] :
( ndr1_0
=> ( c0_1(X3)
| c3_1(X3)
| ~ c1_1(X3) ) )
| hskp31
| ! [X4] :
( ndr1_0
=> ( c0_1(X4)
| ~ c2_1(X4)
| c1_1(X4) ) ) )
& ( ! [X5] :
( ndr1_0
=> ( c1_1(X5)
| ~ c3_1(X5)
| ~ c0_1(X5) ) )
| hskp5
| ! [X6] :
( ndr1_0
=> ( ~ c2_1(X6)
| c1_1(X6)
| ~ c0_1(X6) ) ) )
& ( ! [X7] :
( ndr1_0
=> ( ~ c1_1(X7)
| c0_1(X7)
| c3_1(X7) ) )
| ! [X8] :
( ndr1_0
=> ( c3_1(X8)
| ~ c0_1(X8)
| ~ c1_1(X8) ) )
| hskp32 )
& ( hskp33
| ! [X9] :
( ndr1_0
=> ( ~ c2_1(X9)
| c0_1(X9)
| c1_1(X9) ) )
| hskp6 )
& ( hskp34
| ! [X10] :
( ndr1_0
=> ( ~ c2_1(X10)
| ~ c0_1(X10)
| c3_1(X10) ) )
| ! [X11] :
( ndr1_0
=> ( ~ c2_1(X11)
| ~ c1_1(X11)
| c0_1(X11) ) ) )
& ( ! [X12] :
( ndr1_0
=> ( ~ c3_1(X12)
| ~ c2_1(X12)
| c0_1(X12) ) )
| ! [X13] :
( ndr1_0
=> ( ~ c1_1(X13)
| ~ c0_1(X13)
| ~ c3_1(X13) ) )
| ! [X14] :
( ndr1_0
=> ( ~ c1_1(X14)
| ~ c3_1(X14)
| c2_1(X14) ) ) )
& ( ! [X15] :
( ndr1_0
=> ( ~ c0_1(X15)
| ~ c1_1(X15)
| ~ c3_1(X15) ) )
| ! [X16] :
( ndr1_0
=> ( ~ c1_1(X16)
| ~ c2_1(X16)
| ~ c3_1(X16) ) )
| hskp7 )
& ( hskp35
| ! [X17] :
( ndr1_0
=> ( c1_1(X17)
| c3_1(X17)
| ~ c0_1(X17) ) )
| hskp8 )
& ( ! [X18] :
( ndr1_0
=> ( c3_1(X18)
| ~ c0_1(X18)
| c1_1(X18) ) )
| hskp9
| hskp10 )
& ( ! [X19] :
( ndr1_0
=> ( c0_1(X19)
| ~ c1_1(X19)
| c3_1(X19) ) )
| hskp0
| ! [X20] :
( ndr1_0
=> ( ~ c1_1(X20)
| ~ c2_1(X20)
| c0_1(X20) ) ) )
& ( hskp36
| ! [X21] :
( ndr1_0
=> ( ~ c0_1(X21)
| ~ c3_1(X21)
| ~ c1_1(X21) ) )
| ! [X22] :
( ndr1_0
=> ( c0_1(X22)
| ~ c3_1(X22)
| c1_1(X22) ) ) )
& ( ! [X23] :
( ndr1_0
=> ( ~ c0_1(X23)
| c1_1(X23)
| ~ c3_1(X23) ) )
| ! [X24] :
( ndr1_0
=> ( c1_1(X24)
| ~ c3_1(X24)
| ~ c0_1(X24) ) )
| ! [X25] :
( ndr1_0
=> ( c1_1(X25)
| ~ c0_1(X25)
| c2_1(X25) ) ) )
& ( hskp3
| hskp2
| hskp37 )
& ( ! [X26] :
( ndr1_0
=> ( ~ c0_1(X26)
| ~ c2_1(X26)
| c1_1(X26) ) )
| hskp11
| ! [X27] :
( ndr1_0
=> ( c2_1(X27)
| ~ c3_1(X27)
| ~ c0_1(X27) ) ) )
& ( hskp38
| ! [X28] :
( ndr1_0
=> ( ~ c3_1(X28)
| ~ c2_1(X28)
| c1_1(X28) ) )
| hskp12 )
& ( hskp39
| hskp40
| ! [X29] :
( ndr1_0
=> ( c3_1(X29)
| c0_1(X29)
| c1_1(X29) ) ) )
& ( hskp13
| hskp41
| ! [X30] :
( ndr1_0
=> ( ~ c1_1(X30)
| ~ c0_1(X30)
| c2_1(X30) ) ) )
& ( ! [X31] :
( ndr1_0
=> ( c0_1(X31)
| ~ c3_1(X31)
| ~ c2_1(X31) ) )
| ! [X32] :
( ndr1_0
=> ( c0_1(X32)
| ~ c2_1(X32)
| ~ c1_1(X32) ) )
| ! [X33] :
( ndr1_0
=> ( ~ c0_1(X33)
| ~ c2_1(X33)
| ~ c1_1(X33) ) ) )
& ( hskp42
| ! [X34] :
( ndr1_0
=> ( ~ c2_1(X34)
| c0_1(X34)
| c3_1(X34) ) )
| ! [X35] :
( ndr1_0
=> ( ~ c0_1(X35)
| c1_1(X35)
| c3_1(X35) ) ) )
& ( ! [X36] :
( ndr1_0
=> ( c3_1(X36)
| ~ c1_1(X36)
| ~ c2_1(X36) ) )
| hskp43
| ! [X37] :
( ndr1_0
=> ( c3_1(X37)
| ~ c2_1(X37)
| c1_1(X37) ) ) )
& ( hskp14
| ! [X38] :
( ndr1_0
=> ( c3_1(X38)
| c0_1(X38)
| c1_1(X38) ) )
| ! [X39] :
( ndr1_0
=> ( ~ c0_1(X39)
| ~ c3_1(X39)
| c1_1(X39) ) ) )
& ( hskp44
| ! [X40] :
( ndr1_0
=> ( c3_1(X40)
| ~ c0_1(X40)
| c1_1(X40) ) )
| ! [X41] :
( ndr1_0
=> ( ~ c0_1(X41)
| ~ c1_1(X41)
| c2_1(X41) ) ) )
& ( ! [X42] :
( ndr1_0
=> ( ~ c0_1(X42)
| ~ c2_1(X42)
| ~ c1_1(X42) ) )
| hskp45
| hskp15 )
& ( ! [X43] :
( ndr1_0
=> ( c2_1(X43)
| c3_1(X43)
| ~ c0_1(X43) ) )
| hskp16
| ! [X44] :
( ndr1_0
=> ( c0_1(X44)
| ~ c2_1(X44)
| c3_1(X44) ) ) )
& ( ! [X45] :
( ndr1_0
=> ( c0_1(X45)
| ~ c1_1(X45)
| c3_1(X45) ) )
| ! [X46] :
( ndr1_0
=> ( c3_1(X46)
| c1_1(X46)
| ~ c0_1(X46) ) )
| hskp37 )
& ( hskp17
| hskp18
| ! [X47] :
( ndr1_0
=> ( c3_1(X47)
| ~ c2_1(X47)
| ~ c1_1(X47) ) ) )
& ( ! [X48] :
( ndr1_0
=> ( c2_1(X48)
| c3_1(X48)
| ~ c1_1(X48) ) )
| ! [X49] :
( ndr1_0
=> ( ~ c2_1(X49)
| ~ c0_1(X49)
| ~ c3_1(X49) ) )
| hskp19 )
& ( ! [X50] :
( ndr1_0
=> ( c1_1(X50)
| c0_1(X50)
| ~ c2_1(X50) ) )
| hskp46
| ! [X51] :
( ndr1_0
=> ( ~ c0_1(X51)
| ~ c1_1(X51)
| c2_1(X51) ) ) )
& ( hskp11
| ! [X52] :
( ndr1_0
=> ( ~ c1_1(X52)
| c2_1(X52)
| ~ c3_1(X52) ) )
| hskp20 )
& ( hskp47
| ! [X53] :
( ndr1_0
=> ( ~ c0_1(X53)
| ~ c1_1(X53)
| ~ c3_1(X53) ) )
| hskp21 )
& ( hskp22
| ! [X54] :
( ndr1_0
=> ( c0_1(X54)
| c2_1(X54)
| ~ c3_1(X54) ) )
| hskp23 )
& ( hskp36
| ! [X55] :
( ndr1_0
=> ( ~ c1_1(X55)
| ~ c3_1(X55)
| c0_1(X55) ) )
| ! [X56] :
( ndr1_0
=> ( ~ c3_1(X56)
| c1_1(X56)
| ~ c2_1(X56) ) ) )
& ( ! [X57] :
( ndr1_0
=> ( ~ c3_1(X57)
| c0_1(X57)
| ~ c2_1(X57) ) )
| ! [X58] :
( ndr1_0
=> ( ~ c3_1(X58)
| c2_1(X58)
| ~ c1_1(X58) ) )
| ! [X59] :
( ndr1_0
=> ( ~ c0_1(X59)
| c3_1(X59)
| c1_1(X59) ) ) )
& ( hskp24
| hskp48
| hskp46 )
& ( hskp40
| ! [X60] :
( ndr1_0
=> ( c1_1(X60)
| ~ c2_1(X60)
| ~ c0_1(X60) ) )
| ! [X61] :
( ndr1_0
=> ( c2_1(X61)
| c3_1(X61)
| c1_1(X61) ) ) )
& ( ! [X62] :
( ndr1_0
=> ( c2_1(X62)
| c3_1(X62)
| ~ c0_1(X62) ) )
| ! [X63] :
( ndr1_0
=> ( c0_1(X63)
| ~ c2_1(X63)
| ~ c1_1(X63) ) )
| ! [X64] :
( ndr1_0
=> ( ~ c2_1(X64)
| c0_1(X64)
| ~ c3_1(X64) ) ) )
& ( ! [X65] :
( ndr1_0
=> ( c2_1(X65)
| ~ c1_1(X65)
| ~ c3_1(X65) ) )
| hskp11
| hskp49 )
& ( ! [X66] :
( ndr1_0
=> ( c2_1(X66)
| ~ c1_1(X66)
| ~ c0_1(X66) ) )
| ! [X67] :
( ndr1_0
=> ( c2_1(X67)
| ~ c3_1(X67)
| ~ c1_1(X67) ) )
| ! [X68] :
( ndr1_0
=> ( c2_1(X68)
| c1_1(X68)
| c0_1(X68) ) ) )
& ( ! [X69] :
( ndr1_0
=> ( c1_1(X69)
| c2_1(X69)
| ~ c3_1(X69) ) )
| ! [X70] :
( ndr1_0
=> ( ~ c1_1(X70)
| c2_1(X70)
| c3_1(X70) ) )
| ! [X71] :
( ndr1_0
=> ( c3_1(X71)
| c1_1(X71)
| c2_1(X71) ) ) )
& ( ! [X72] :
( ndr1_0
=> ( c1_1(X72)
| c0_1(X72)
| c2_1(X72) ) )
| hskp25
| hskp26 )
& ( hskp50
| hskp17
| hskp51 )
& ( hskp34
| ! [X73] :
( ndr1_0
=> ( ~ c1_1(X73)
| c0_1(X73)
| ~ c2_1(X73) ) )
| ! [X74] :
( ndr1_0
=> ( ~ c0_1(X74)
| ~ c2_1(X74)
| c1_1(X74) ) ) ) ) ).
%--------------------------------------------------------------------------