TPTP Problem File: SYN435+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : SYN435+1 : TPTP v9.0.0. Released v2.1.0.
% Domain : Syntactic (Translated)
% Problem : ALC, N=4, R=1, L=40, K=3, D=1, P=0, Index=046
% Version : Especial.
% English :
% Refs : [OS95] Ohlbach & Schmidt (1995), Functional Translation and S
% : [HS97] Hustadt & Schmidt (1997), On Evaluating Decision Proce
% : [Wei97] Weidenbach (1997), Email to G. Sutcliffe
% Source : [Wei97]
% Names : alc-4-1-40-3-1-046.dfg [Wei97]
% Status : CounterSatisfiable
% Rating : 0.00 v5.5.0, 0.20 v5.3.0, 0.50 v5.0.0, 0.33 v4.1.0, 0.50 v4.0.1, 0.33 v3.7.0, 0.00 v3.5.0, 0.25 v3.4.0, 0.17 v3.2.0, 0.25 v3.1.0, 0.50 v2.6.0, 0.25 v2.5.0, 0.33 v2.2.1, 0.00 v2.1.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 def)
% Number of atoms : 543 ( 0 equ)
% Maximal formula atoms : 543 ( 543 avg)
% Number of connectives : 764 ( 222 ~; 238 |; 251 &)
% ( 0 <=>; 53 =>; 0 <=; 0 <~>)
% Maximal formula depth : 101 ( 101 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 58 ( 58 usr; 54 prp; 0-1 aty)
% Number of functors : 53 ( 53 usr; 53 con; 0-0 aty)
% Number of variables : 53 ( 53 !; 0 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : These ALC problems have been translated from propositional
% multi-modal K logic formulae generated according to the scheme
% described in [HS97], using the optimized functional translation
% described in [OS95]. The finite model property holds, the
% Herbrand Universe is finite, they are decidable (the complexity
% is PSPACE-complete), resolution + subsumption + condensing is a
% decision procedure, and the translated formulae belong to the
% (CNF-translation of the) Bernays-Schoenfinkel class [Wei97].
%--------------------------------------------------------------------------
fof(co1,conjecture,
~ ( ( ~ hskp0
| ( ndr1_0
& c2_1(a282)
& c3_1(a282)
& ~ c1_1(a282) ) )
& ( ~ hskp1
| ( ndr1_0
& c2_1(a283)
& ~ c1_1(a283)
& ~ c3_1(a283) ) )
& ( ~ hskp2
| ( ndr1_0
& ~ c1_1(a290)
& ~ c3_1(a290)
& ~ c0_1(a290) ) )
& ( ~ hskp3
| ( ndr1_0
& ~ c2_1(a291)
& c0_1(a291)
& ~ c1_1(a291) ) )
& ( ~ hskp4
| ( ndr1_0
& ~ c0_1(a292)
& ~ c3_1(a292)
& ~ c1_1(a292) ) )
& ( ~ hskp5
| ( ndr1_0
& ~ c1_1(a294)
& c2_1(a294)
& ~ c3_1(a294) ) )
& ( ~ hskp6
| ( ndr1_0
& c2_1(a297)
& c0_1(a297)
& ~ c1_1(a297) ) )
& ( ~ hskp7
| ( ndr1_0
& c2_1(a299)
& c0_1(a299)
& ~ c3_1(a299) ) )
& ( ~ hskp8
| ( ndr1_0
& ~ c1_1(a300)
& c0_1(a300)
& ~ c2_1(a300) ) )
& ( ~ hskp9
| ( ndr1_0
& c1_1(a301)
& ~ c3_1(a301)
& ~ c0_1(a301) ) )
& ( ~ hskp10
| ( ndr1_0
& ~ c1_1(a306)
& ~ c3_1(a306)
& ~ c2_1(a306) ) )
& ( ~ hskp11
| ( ndr1_0
& c1_1(a309)
& c0_1(a309)
& ~ c2_1(a309) ) )
& ( ~ hskp12
| ( ndr1_0
& ~ c3_1(a310)
& ~ c1_1(a310)
& ~ c2_1(a310) ) )
& ( ~ hskp13
| ( ndr1_0
& c3_1(a311)
& c0_1(a311)
& ~ c1_1(a311) ) )
& ( ~ hskp14
| ( ndr1_0
& ~ c3_1(a312)
& ~ c0_1(a312)
& ~ c2_1(a312) ) )
& ( ~ hskp15
| ( ndr1_0
& c1_1(a313)
& c3_1(a313)
& ~ c2_1(a313) ) )
& ( ~ hskp16
| ( ndr1_0
& c3_1(a317)
& c1_1(a317)
& ~ c0_1(a317) ) )
& ( ~ hskp17
| ( ndr1_0
& ~ c0_1(a318)
& ~ c3_1(a318)
& ~ c2_1(a318) ) )
& ( ~ hskp18
| ( ndr1_0
& ~ c2_1(a319)
& c1_1(a319)
& ~ c0_1(a319) ) )
& ( ~ hskp19
| ( ndr1_0
& c3_1(a322)
& ~ c2_1(a322)
& ~ c1_1(a322) ) )
& ( ~ hskp20
| ( ndr1_0
& ~ c3_1(a324)
& ~ c2_1(a324)
& ~ c0_1(a324) ) )
& ( ~ hskp21
| ( ndr1_0
& c0_1(a326)
& ~ c1_1(a326)
& ~ c2_1(a326) ) )
& ( ~ hskp22
| ( ndr1_0
& c3_1(a327)
& ~ c1_1(a327)
& ~ c0_1(a327) ) )
& ( ~ hskp23
| ( ndr1_0
& c1_1(a333)
& ~ c2_1(a333)
& ~ c3_1(a333) ) )
& ( ~ hskp24
| ( ndr1_0
& c0_1(a336)
& ~ c2_1(a336)
& ~ c1_1(a336) ) )
& ( ~ hskp25
| ( ndr1_0
& ~ c2_1(a337)
& ~ c0_1(a337)
& ~ c3_1(a337) ) )
& ( ~ hskp26
| ( ndr1_0
& ~ c0_1(a347)
& ~ c2_1(a347)
& ~ c1_1(a347) ) )
& ( ~ hskp27
| ( ndr1_0
& c1_1(a284)
& ~ c0_1(a284)
& c2_1(a284) ) )
& ( ~ hskp28
| ( ndr1_0
& c0_1(a285)
& c2_1(a285)
& c1_1(a285) ) )
& ( ~ hskp29
| ( ndr1_0
& ~ c1_1(a286)
& ~ c0_1(a286)
& c2_1(a286) ) )
& ( ~ hskp30
| ( ndr1_0
& c2_1(a287)
& c0_1(a287)
& c3_1(a287) ) )
& ( ~ hskp31
| ( ndr1_0
& ~ c1_1(a288)
& ~ c2_1(a288)
& c3_1(a288) ) )
& ( ~ hskp32
| ( ndr1_0
& c2_1(a289)
& c3_1(a289)
& c0_1(a289) ) )
& ( ~ hskp33
| ( ndr1_0
& c1_1(a293)
& ~ c2_1(a293)
& c0_1(a293) ) )
& ( ~ hskp34
| ( ndr1_0
& ~ c3_1(a296)
& c2_1(a296)
& c1_1(a296) ) )
& ( ~ hskp35
| ( ndr1_0
& ~ c0_1(a298)
& ~ c3_1(a298)
& c2_1(a298) ) )
& ( ~ hskp36
| ( ndr1_0
& c1_1(a302)
& c0_1(a302)
& c3_1(a302) ) )
& ( ~ hskp37
| ( ndr1_0
& c0_1(a303)
& c1_1(a303)
& c2_1(a303) ) )
& ( ~ hskp38
| ( ndr1_0
& ~ c2_1(a304)
& c0_1(a304)
& c1_1(a304) ) )
& ( ~ hskp39
| ( ndr1_0
& ~ c2_1(a305)
& ~ c1_1(a305)
& c0_1(a305) ) )
& ( ~ hskp40
| ( ndr1_0
& c2_1(a307)
& ~ c0_1(a307)
& c1_1(a307) ) )
& ( ~ hskp41
| ( ndr1_0
& c1_1(a315)
& c3_1(a315)
& c2_1(a315) ) )
& ( ~ hskp42
| ( ndr1_0
& ~ c1_1(a316)
& ~ c3_1(a316)
& c0_1(a316) ) )
& ( ~ hskp43
| ( ndr1_0
& ~ c2_1(a325)
& c1_1(a325)
& c3_1(a325) ) )
& ( ~ hskp44
| ( ndr1_0
& c2_1(a330)
& ~ c3_1(a330)
& c0_1(a330) ) )
& ( ~ hskp45
| ( ndr1_0
& c1_1(a331)
& ~ c3_1(a331)
& c2_1(a331) ) )
& ( ~ hskp46
| ( ndr1_0
& ~ c3_1(a334)
& ~ c0_1(a334)
& c2_1(a334) ) )
& ( ~ hskp47
| ( ndr1_0
& ~ c0_1(a335)
& ~ c2_1(a335)
& c1_1(a335) ) )
& ( ~ hskp48
| ( ndr1_0
& ~ c3_1(a340)
& c1_1(a340)
& c2_1(a340) ) )
& ( ~ hskp49
| ( ndr1_0
& c3_1(a342)
& ~ c1_1(a342)
& c0_1(a342) ) )
& ( ~ hskp50
| ( ndr1_0
& c0_1(a343)
& c1_1(a343)
& c3_1(a343) ) )
& ( ~ hskp51
| ( ndr1_0
& c0_1(a344)
& ~ c1_1(a344)
& c3_1(a344) ) )
& ( ~ hskp52
| ( ndr1_0
& ~ c0_1(a345)
& c2_1(a345)
& c1_1(a345) ) )
& ( ! [U] :
( ndr1_0
=> ( c3_1(U)
| ~ c0_1(U)
| c2_1(U) ) )
| hskp0
| ! [V] :
( ndr1_0
=> ( c1_1(V)
| c0_1(V)
| c3_1(V) ) ) )
& ( hskp1
| hskp27
| hskp28 )
& ( hskp29
| hskp30
| ! [W] :
( ndr1_0
=> ( c2_1(W)
| ~ c3_1(W)
| ~ c1_1(W) ) ) )
& ( ! [X] :
( ndr1_0
=> ( ~ c2_1(X)
| ~ c1_1(X)
| ~ c0_1(X) ) )
| hskp31
| ! [Y] :
( ndr1_0
=> ( c1_1(Y)
| ~ c2_1(Y)
| ~ c3_1(Y) ) ) )
& ( hskp32
| hskp2
| ! [Z] :
( ndr1_0
=> ( c3_1(Z)
| c0_1(Z)
| ~ c2_1(Z) ) ) )
& ( ! [X1] :
( ndr1_0
=> ( c2_1(X1)
| ~ c3_1(X1)
| ~ c1_1(X1) ) )
| hskp3
| hskp4 )
& ( hskp33
| ! [X2] :
( ndr1_0
=> ( ~ c0_1(X2)
| ~ c2_1(X2)
| ~ c1_1(X2) ) )
| hskp5 )
& ( hskp33
| hskp34
| ! [X3] :
( ndr1_0
=> ( c2_1(X3)
| c1_1(X3)
| c0_1(X3) ) ) )
& ( ! [X4] :
( ndr1_0
=> ( ~ c2_1(X4)
| c0_1(X4)
| ~ c3_1(X4) ) )
| ! [X5] :
( ndr1_0
=> ( c1_1(X5)
| ~ c2_1(X5)
| c3_1(X5) ) )
| ! [X6] :
( ndr1_0
=> ( ~ c2_1(X6)
| ~ c0_1(X6)
| c1_1(X6) ) ) )
& ( ! [X7] :
( ndr1_0
=> ( ~ c2_1(X7)
| c3_1(X7)
| ~ c1_1(X7) ) )
| ! [X8] :
( ndr1_0
=> ( c2_1(X8)
| ~ c0_1(X8)
| ~ c3_1(X8) ) )
| hskp6 )
& ( ! [X9] :
( ndr1_0
=> ( c1_1(X9)
| c3_1(X9)
| ~ c0_1(X9) ) )
| ! [X10] :
( ndr1_0
=> ( ~ c2_1(X10)
| ~ c1_1(X10)
| ~ c3_1(X10) ) )
| hskp35 )
& ( ! [X11] :
( ndr1_0
=> ( ~ c2_1(X11)
| ~ c0_1(X11)
| ~ c1_1(X11) ) )
| hskp7
| ! [X12] :
( ndr1_0
=> ( ~ c0_1(X12)
| c1_1(X12)
| ~ c3_1(X12) ) ) )
& ( ! [X13] :
( ndr1_0
=> ( ~ c1_1(X13)
| c3_1(X13)
| ~ c0_1(X13) ) )
| ! [X14] :
( ndr1_0
=> ( c3_1(X14)
| c1_1(X14)
| ~ c2_1(X14) ) )
| hskp8 )
& ( hskp9
| ! [X15] :
( ndr1_0
=> ( ~ c0_1(X15)
| c3_1(X15)
| ~ c1_1(X15) ) )
| ! [X16] :
( ndr1_0
=> ( ~ c0_1(X16)
| c3_1(X16)
| c2_1(X16) ) ) )
& ( hskp36
| ! [X17] :
( ndr1_0
=> ( ~ c3_1(X17)
| ~ c0_1(X17)
| c2_1(X17) ) )
| ! [X18] :
( ndr1_0
=> ( c0_1(X18)
| ~ c2_1(X18)
| c1_1(X18) ) ) )
& ( hskp37
| hskp38
| ! [X19] :
( ndr1_0
=> ( c0_1(X19)
| c2_1(X19)
| ~ c1_1(X19) ) ) )
& ( hskp39
| hskp10
| ! [X20] :
( ndr1_0
=> ( ~ c3_1(X20)
| c2_1(X20)
| ~ c1_1(X20) ) ) )
& ( hskp40
| ! [X21] :
( ndr1_0
=> ( ~ c2_1(X21)
| ~ c0_1(X21)
| ~ c1_1(X21) ) )
| ! [X22] :
( ndr1_0
=> ( c3_1(X22)
| c0_1(X22)
| c1_1(X22) ) ) )
& ( ! [X23] :
( ndr1_0
=> ( c3_1(X23)
| c0_1(X23)
| c1_1(X23) ) )
| hskp30
| hskp11 )
& ( hskp12
| ! [X24] :
( ndr1_0
=> ( c0_1(X24)
| ~ c3_1(X24)
| ~ c1_1(X24) ) )
| ! [X25] :
( ndr1_0
=> ( c0_1(X25)
| c1_1(X25)
| ~ c3_1(X25) ) ) )
& ( hskp13
| ! [X26] :
( ndr1_0
=> ( c2_1(X26)
| c1_1(X26)
| ~ c3_1(X26) ) )
| hskp14 )
& ( hskp15
| ! [X27] :
( ndr1_0
=> ( c2_1(X27)
| ~ c1_1(X27)
| ~ c3_1(X27) ) )
| hskp13 )
& ( hskp41
| hskp42
| ! [X28] :
( ndr1_0
=> ( c0_1(X28)
| ~ c2_1(X28)
| c1_1(X28) ) ) )
& ( ! [X29] :
( ndr1_0
=> ( c0_1(X29)
| c2_1(X29)
| ~ c1_1(X29) ) )
| hskp16
| ! [X30] :
( ndr1_0
=> ( ~ c0_1(X30)
| c2_1(X30)
| c3_1(X30) ) ) )
& ( hskp17
| hskp18
| ! [X31] :
( ndr1_0
=> ( ~ c1_1(X31)
| ~ c3_1(X31)
| c0_1(X31) ) ) )
& ( ! [X32] :
( ndr1_0
=> ( ~ c1_1(X32)
| c3_1(X32)
| c2_1(X32) ) )
| ! [X33] :
( ndr1_0
=> ( c3_1(X33)
| ~ c1_1(X33)
| c0_1(X33) ) )
| hskp4 )
& ( ! [X34] :
( ndr1_0
=> ( c2_1(X34)
| c1_1(X34)
| c0_1(X34) ) )
| ! [X35] :
( ndr1_0
=> ( c2_1(X35)
| c3_1(X35)
| c0_1(X35) ) )
| hskp13 )
& ( hskp19
| hskp18
| hskp20 )
& ( hskp43
| hskp21
| hskp22 )
& ( hskp43
| hskp42
| hskp44 )
& ( hskp45
| hskp18
| hskp23 )
& ( hskp46
| hskp47
| hskp24 )
& ( hskp25
| ! [X36] :
( ndr1_0
=> ( c3_1(X36)
| c0_1(X36)
| ~ c1_1(X36) ) )
| ! [X37] :
( ndr1_0
=> ( c1_1(X37)
| ~ c3_1(X37)
| ~ c2_1(X37) ) ) )
& ( ! [X38] :
( ndr1_0
=> ( c1_1(X38)
| ~ c2_1(X38)
| c3_1(X38) ) )
| hskp7
| ! [X39] :
( ndr1_0
=> ( ~ c3_1(X39)
| ~ c0_1(X39)
| ~ c2_1(X39) ) ) )
& ( hskp19
| ! [X40] :
( ndr1_0
=> ( ~ c3_1(X40)
| ~ c0_1(X40)
| ~ c2_1(X40) ) )
| hskp48 )
& ( hskp45
| ! [X41] :
( ndr1_0
=> ( ~ c0_1(X41)
| ~ c1_1(X41)
| ~ c2_1(X41) ) )
| hskp49 )
& ( hskp50
| hskp51 )
& ( ! [X42] :
( ndr1_0
=> ( ~ c3_1(X42)
| c0_1(X42)
| ~ c1_1(X42) ) )
| hskp52
| ! [X43] :
( ndr1_0
=> ( c0_1(X43)
| ~ c3_1(X43)
| ~ c1_1(X43) ) ) )
& ( ! [X44] :
( ndr1_0
=> ( ~ c2_1(X44)
| c0_1(X44)
| ~ c1_1(X44) ) )
| ! [X45] :
( ndr1_0
=> ( ~ c3_1(X45)
| ~ c0_1(X45)
| ~ c1_1(X45) ) )
| ! [X46] :
( ndr1_0
=> ( ~ c2_1(X46)
| ~ c3_1(X46)
| c0_1(X46) ) ) )
& ( ! [X47] :
( ndr1_0
=> ( ~ c3_1(X47)
| ~ c0_1(X47)
| c1_1(X47) ) )
| hskp41
| hskp26 ) ) ).
%--------------------------------------------------------------------------